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Chapter 1

Introduction

These notes introduce general equilibrium theory, along with some requisite mathematical
tools. The term “general equilibrium” is somewhat difficult to define. Roughly speaking, a
model is described being a general equilibrium model if it aims to study an entire economy,
without any loose ends such as taxes being thrown in the ocean, food aid being helicoptered
in, or cars being produced from “money” rather than labour, machines, and natural resources.
General equilibrium theory is typically described as a microeconomics topic, but this is mis-
leading. Almost all microeconomic models (including almost all game theory models) do not
aspire to be general equilibrium models. For instance, almost all models of auctions involve
the players directly consuming the money that they are left with at the end of the game, rather
than trading that money for goods and deriving utility from goods. On the other hand, most
applied macroeconomic models are general equilibrium models. Therefore, one of the most
important roles of “microeconomic general equilibrium theory” is to provide a foundation for
modern macroeconomics.

These notes only study (special cases of) the Walras (1874) model as formulated by Arrow
and Debreu (1954), which is a general equilibrium model of perfect competition. There are of
course many general equilibrium models with monopolistic competition, adverse selection, and
other frictions. We focus on perfect competition for simplicity, and largely follow the analysis
of Debreu (1959).

The Arrow-Debreu model is much like first-year undergraduate microeconomics, which
studies a single-market economy. The concepts of supply, demand, marginal utility, marginal
cost, equilibrium, and efficiency are the primary focus, just like undergraduate microeconomics.
However, general equilibrium theory studies many markets simultaneously, whereas undergrad-
uate microeconomics is very limited in its understanding of how different markets interact with
each other.

For example, consider the interplay between migration and international agricultural mar-
kets. Suppose one country has more arable land. Does that mean workers will migrate to
the arable country, to take advantage of higher wages resulting from high productivity? Or
perhaps only few workers are needed in the arable country to maintain high output, so actu-
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Figure 1.1: Competitive equilibrium in a sin-
gle market economy

ally the workers will migrate to less arable countries? The tools of undergraduate economics
are not very helpful here, because the problem makes little sense unless there at least three
workers, two firms (one for each country) each with their own production function, and four
markets (land in each country, labour, and food). A supply and demand curve – or even a 2x2
Edgeworth box – just won’t do.

While there are many important applications of general equilibrium theory, the most im-
portant reason to learn it is to understand macroeconomics carefully. The most important
trade-off in macro-economics is between investment and consumption. This is a never-ending
problem; if the world were to end tomorrow, then we would have a big party today and destroy
our capital. Therefore, macroeconomics requires an infinite set of markets.

Despite all of these complications, our goal is to simplify everything, so that we can use
as much intuition from undergraduate microeconomics as possible. Indeed, we recommend
that you find your favourite undergraduate microeconomics textbook, and compare graduate
and undergraduate ideas as you progress through your study. Roughly speaking, the following
undergraduate ideas generalise as follows:

• MC = supply. In undergraduate economics, the supply curve is the same as the marginal
cost curve (and the demand curve is the same as the marginal benefit curve). The
envelope theorem generalises the idea that marginal values are connected to optimal
policies.

• P = MC. Dynamic programming allows us to think in terms of production cost curves,
even when the costs arise from complex trade-offs about which input factors to purchase.
This in turn allows us to derive the classic first-order condition that price equals marginal
cost.

• MC is upward slopping. In undergraduate economics, we assume that the marginal cost
curve is increasing (and the marginal benefit curve is decreasing). The tools of convex
analysis can be applied to establish that if isoquants of the production technology are
convex (i.e. have an increasing slope), then the marginal cost curve is increasing.
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• Supply = demand. An equilibrium in a single-market economy is when the quantity
supplied equals the quantity demanded. In a multi-market economy, the situation is
much more complicated, because every market’s price affects every other market’s quan-
tity supplied and demand. But nevertheless, an equilibrium occurs when supply equals
demand in every market.

• Equilibria are efficient. Smith (1759) first pointed out that competitive markets direct
people to make socially desirable choices, which he called the invisible hand. In a
introductory economics, the social surplus is maximised at the competitive equilibrium’s
quantity. The notion of “social surplus” does not generalise, and has to be replaced with
a weaker notion, namely Pareto efficiency. In multi-market contexts, the invisible hand
leads decision makers to Pareto efficient allocations.

These notes are quite different from the classical graduate microeconomics textbooks, in-
cluding Jehle and Reny (2011), Kreps (1990), Mas-Colell, Whinston and Green (1995), and
Varian (1992). The primary difference is that we use the language of dynamic programming
rather than mathematical duality to develop producer and consumer theory. First, we believe
“duality” gives unhelpful intuition. Duality in mathematics is the idea that to two seemingly
unrelated problems in fact having some non-obvious relationship that can be used to deduce
new conclusions. However, in producer theory, the relationship is not subtle: if a producer is
not minimising his production cost, then he can increase his profit by reducing his production
cost. The reason why we study both the profit maximisation and cost minimisation problems
is entirely different. Our motivation is to decompose a complicated decision (how to allocate
resources within a firm) into two smaller and simpler decisions (how much to produce, and
with what to produce?). When we do this, we learn more about the relationships between the
decisions, e.g. if a firm plans to produce more, then how will it adjust its production factors?
This decomposition idea is the spirit of dynamic programming, and we believe it should be
taught that way.

Second, dynamic programming plays a major role in economics, especially in macroeco-
nomics. The tools from producer and consumer theory, such as the envelope theorem, play a
major role in macroeconomics. However, the traditional exposition of the envelope theorem
in microeconomics appears very different from that of macroeconomics, and the connection is
usually lost on students. By using a common language between micro- and macroeconomics,
we hope that students will learn both better.

Another important difference is that we focus on the most important mathematical tools
only, and try to keep the proofs as simple as possible. For example, the traditional texts
prove the second welfare theorem using the separating hyperplane theorem. However, a much
simpler proof discovered by Maskin and Roberts (1980) is possible. It is based on economics
ideas rather than geometric ones, and provides a better model of how economic theorists think.
(This proof is included as an aside in Varian (1992).)

Finally, the focus of the problems and exercises is to prepare students to use the tools in
the way that they are typically used in economics. We feel that traditional textbooks typically
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neglect applications in favour of determining the technical limits of the tools. While both are
valuable, we think it is more important to know what the tools are useful for, rather than what
they are useless for.



Chapter 2

Production

This chapter studies the theory of the competitive firm which means we will assume that the
firm is unable to manipulate prices. The theory focuses on how the firm reacts to prices when
choosing input and output quantities. This choice can be quite complicated, as the firm may
have many possible output levels, and many possible ways to deliver each output level. For
example, a car manufacturer may have to decide on hiring many types of specialised labour
and purchase many specialised components. Is it possible to construct a simple marginal cost
curve and solve the firm’s output choice by setting marginal cost equal to price?

The answer is yes, but some mathematical tools are involved, all of which are widely used
by economists. First, dynamic programming is used to simplify a complicated decision
problem by breaking it into smaller problems. For example, we break the firm’s production
decision into an output choice followed by an input choice. This allows us to construct a
marginal cost curve without getting overwhelmed with the details of the input choices. Second,
the envelope theorem generalises the idea that optimal choices (such as supply curves) are
closely related to marginal valuations (such as marginal cost curves). Third, convex analysis
is a branch of geometry that captures the ideas of decreasing returns to scale and diminishing
marginal productivity, and allows us to understand when marginal cost curves are increasing.

In Section 2.1 we introduce production functions which describe how the firm may transform
inputs into outputs. Section 2.2 then puts production into a competitive market context in
which firms make input and output decisions to maximise profits. Section 2.3 introduces the
envelope theorem, which explores the relationship between marginal valuations and optimal
choices. With some help of convex analysis techniques, we establish that output price increases
lead to more output and that factor price increases lead to a decrease in demand for that factor.
Section 2.4 introduces dynamic programming, which allows us to focus on output decisions
without being distracted by input decisions. This leads us to a version of the classical “price
equals marginal cost” formula. Section 2.5 extends the tools from Section 2.3 to accommodate
constraints; this is necessary for studying the nature of marginal costs. This section establishes
that marginal costs are increasing in output. Finally, Section 2.6 concludes with a discussion of

11
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more complicated production technologies, such as factories that produce several goods. This
last section is for completeness only and can be skipped.

2.1 Production Functions
For the moment, we will take the view that a firm specialises in making a single product out
of several factor products, with the goal of maximizing its profits. Everything in this section
is typically ignored in a standard introductory economics lecture – it is all buried inside the
firm’s cost function.

We assume that there are a total of N goods in this economy. The firm produces one good
in this set using the other N − 1 goods as factor input goods. A production function describes
the technology that transforms N − 1 factor input goods x ∈ RN−1

+ into a single output good
y = f(x) ∈ R+. Some basic assumptions include:

• Possibility of inaction: Producing no output is feasible, i.e. f(0) = 0.

• Free disposal (Monotonicity): The firm has no obligation to use all input goods provided.
Having too many input goods never hurts, as the firm can always throw them away
without any cost. This idea leads to the assumption of monotonicity where f is weakly
increasing. Specifically if x ≥ x′ (i.e. xn ≥ x′

n for all n) then f(x) ≥ f(x′). A stronger
assumption, strict monotonicity is that if x > x′ (i.e. xn ≥ x′

n for all n and xn > x′
n

for at least one n) then f(x) > f(x′).

• Smoothness: f is twice continuously differentiable. Each partial derivative ∂
∂xi

f(x) is the
marginal productivity of xi.

In introductory economics, it is typical to assume that the marginal cost of production
is increasing. For us, marginal cost is something that we will derive endogenously, rather
than something we will assume directly. But, we consider various other possible assumptions
instead:

• Decreasing marginal productivity: the production function has weakly decreasing marginal
productivity in good 1 if, holding all other input factors x−1 fixed, ∂

∂x1
f(x) weakly de-

creases as x1 increases. 1 For example, consider a restaurant that produces food using
cooks and kitchen space. Adding a cook without adding any kitchen space is likely to
create congestion that leads to decreasing marginal productivity of cooks. Similarly,
adding kitchen space without adding cooks will relieve a diminishing amount of con-
gestion. Figure 2.1 depicts decreasing marginal productivity of cooks and kitchens in

1The word “decreasing” is used differently in the context of marginal productivity and marginal utility
compared to everywhere else. Normally, “decreasing” means the function gets smaller as its parameter vector
increases in any (combination) of its dimensions. However, decreasing marginal productivity does not mean
that the marginal productivity of labour decreases when the amount of capital increases.
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producing food. Decreasing marginal productivity of the first input is equivalent to the
production function being concave in that factor, and also to ∂2

∂x2
1
f(x) < 0.

c

f(c, k)

k = 3

k = 6
k = 9

(a) Cooks
k

f(c, k)

c = 3

c = 6

c = 9

(b) Kitchens
Figure 2.1: Diminishing marginal productivity of cooks and kitchens when f(c, k) = c0.7k0.3.

• Weakly increasing returns to scale: for all x ∈ RN−1
+ and all t > 1, f(tx) ≥ tf(x). For

example, communications networks have this character: when adding the nth phone line
to a telephone network, there are n − 1 new pairs of people who are now connected to
each other. So, the number of connections supplied y is a function f(n) = 1

2
n(n − 1)

of the number of people n, and f(tn) ≈ t2f(n). Note that this assumption leads to
decreasing (not increasing) marginal cost.

• Constant returns to scale: for all x ∈ RN−1
+ and all t > 0, f(tx) = tf(x). For example,

this occurs if the output from doubling the size of a factory f(2x) is equal to the output
from two identical factories f(x)+f(x) = 2f(x). This is a common assumption to make.

• Weakly decreasing returns to scale: for all x ∈ RN−1
+ and all t > 1, f(tx) ≤ tf(x).

Decreasing returns to scale can occur if we have mispecified the model and left out
some resource. For example, building an identical factory requires finding an (identical)
manager to run it. If we forget to include any input factors (such as the manager) in the
model, then “cloning” a firm by cloning only the inputs that were explicitly modelled
would give a less productive clone – at least under the assumption of decreasing marginal
productivity. One way to make up for such omissions is to assume decreasing returns to
scale.
This assumption is philosophically unappealing for a theory of the “whole economy at
the same time.” Why do we need to leave anything out? Sadly, economics is hard, and
we frequently need to take shortcuts. This is a common one.

• Concavity: f is a concave function, which means that taking a mixture between two
bundles of inputs, f(ax + (1 − a)x′) gives more output than the corresponding linear
approximation, af(x) + (1− a)f(x′). For example, if x represents a hospital with many
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doctors, and x′ represents a hospital with many nurses, and a = 1
2
, then concavity implies

f(x) + f(x′) ≤ f(1
2
x+ 1

2
x′) + f(1

2
x+ 1

2
x′)

which means that it’s better to reallocate the doctors and nurses so that both hospitals
are identical.
Concavity is like assuming both weakly decreasing returns to scale and decreasing marginal
productivity for each input factor, i.e. for each input factor, as we increase that factor
(without changing any of the other factors), the marginal output decreases. Caution:
this assumption is frequently referred to as “a convexity assumption,” even though −f ,
not f , is convex.
If f is smooth and concave, then it has weakly decreasing marginal productivity. To see
this, hold (x2, . . . , xN−1) fixed and let g(x1) = f(x1, x2, . . . xN−1), so that g′(x1) is the
marginal productivity of x1. Since f is concave, g is also concave, since for all s ∈ [0, 1]
and all x1, x

′
1 ∈ R,

g(sx1 + (1− s)x′
1) = f(sx1 + (1− s)x′

1, sx2 + (1− s)x2, . . . , sxN−1 + (1− s)xN−1)

= f(sx1 + (1− s)x′
1, x2, . . . , xN−1)

= f(s(x1, x2, . . . , xN−1) + (1− s)(x′
1, x2, . . . , xN−1))

≥ sf(x1, x2, . . . , xN−1) + (1− s)f(x′
1, x2, . . . , xN−1)

= sg(x1) + (1− s)g(x′
1).

Note that the first two steps above are devoted to reformulating the convex combination
in a form that matches Theorem D.6 characterisation of concavity. Similarly, since f is
smooth, g is also smooth (by the chain rule). Since g is smooth and concave, Theorem D.3
implies g′ is weakly decreasing, so we have established f has weakly decreasing marginal
productivity in the first input. The same logic applies to the other inputs.
If f is concave and has the possibility of inaction, then it has decreasing returns to scale.
To check this, we must show f(tx) ≤ tf(x) for t > 1. Let s = 1/t, which means that
s ∈ (0, 1). By Theorem D.6, sf(tx) + (1 − s)f(0) ≤ f(stx + (1 − s)0). We can then
deduce:

sf(tx) ≤ f(stx) (2.1)
1

t
f(tx) ≤ f(x) (2.2)

f(tx) ≤ tf(x). (2.3)

Question 2.1. ✓ Show mathematically or graphically that if f is smooth and has constant-
returns to scale, then marginal productivities do not depend on scale.
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Question 2.2. ✓ Can a production process have both diminishing marginal productivity and
increasing returns to scale? (Hint: you just need to find one example.)
There are typically many different combinations of inputs that give the same level of output
y. This set is called the isoquant,

I(y) = f−1(y) =
{
x ∈ RN−1

+ : f(x) = y
}
.

The set above the isoquant – the set of inputs that give greater or equal output than y – is
called the upper contour set,

V (y) = f−1([y,∞)) =
{
x ∈ RN−1

+ : f(x) ≥ y
}
.

See Figure 2.2 for an example with three isoquants and three upper contour sets. Note that
the upper contour sets may be overlapping whereas the isoquants never cross.
Question 2.3. ✓ Explain why two different isoquants never cross.

x1

x2

y = 5

y = 10

y = 15

Figure 2.2: Isoquants and Upper Contour Sets

This allows us to present another possible assumption:

• Quasi-concavity: f is a quasi-concave function, i.e. the upper contour set V (y) for each
output level y is convex. This has the following economic interpretation. Consider two
input bundles x, x′ ∈ RN−1

+ on the same isoquant, i.e. f(x) = f(x′). Quasiconcavity
means that mixtures ax+(1−a)x′ give at least as much output, i.e. f(ax+(1−a)x′) ≥
f(x).

Question 2.4. ✓ Show mathematically or graphically that quasi-concave smooth production
functions do not necessarily have decreasing marginal productivity. (Hint: you just have to
find one counter-example.)
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Since a production function may allow many ways to produce the same output, it raises the
question: how can the firm substitute its inputs at the margin to produce the same quantity?
For example, suppose a supermarket initially plans to use x1 computers and x2 sales people.
If it buys x1 + ∆ computers instead, how many sales people can it replace, maintaining the
same output? This is called the marginal rate of technical substitution from x2 to x1.

Geometrically it is the slope of the isoquant. If we think of the isoquant as a function, this
amounts to calculating the derivative of the function. The function g of an isoquant is defined
implicitly by the equation

f(x1, g(x1)) = f(x∗
1, x

∗
2) for all x1. (2.4)

By the implicit function theorem (Theorem F.3), its derivative at x1 = x∗
1 is

g′(x∗
1) = −

∂f(x∗
1,x

∗
2)

∂x1

∂f(x∗
1,x

∗
2)

∂x2

. (2.5)

Question 2.5. ✓ Show mathematically or graphically that if f is smooth and has constant-
returns to scale, then marginal rates of technical substitution do not depend on scale.

2.2 Profit Maximization
In this section, we model the firm to be responding to prices by choosing a production plan to
maximize their profits. In particular, the firm can not choose prices in this simple model. Nor
can the firm influence prices, e.g. the firm “believes” that restricting supply would not affect
prices.

The abstract theory in this section focuses on a single output good for simplicity. However,
it is straightforward to apply the theory to other situations such as multiple firms in a supply
chain, multi-product firms, a firm that supplies the same product in different places or at
different times, and so on. The examples and exercises explore these possibilities.

Let p ∈ R+ and w ∈ RN−1
+ be the prices of the output and input goods, respectively.

The notation w is convenient because input prices might include wages. The firm’s profit
function is

π(p;w) = max
x∈RN−1

+

pf(x)− w · x = pf(x(p;w))− w · x(p;w) (2.6)

where x(p;w) is called the factor demand function.
In the previous sentence, the word the before factor demand function is problematic. We

usually only say “the” if there is exactly one thing being referred to, such as “the biggest house
in the world”. We do not write “the most direct road from Edinburgh to New York” (there
is none). Similarly, we do not write “the biggest sheet of A4 paper” (they are supposedly all
the same size, so there are many such sheets of paper). For these reasons, we often write “a”
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instead of “the”, unless we know for sure that there is exactly one item under discussion. This
issue is discussed in more detail elsewhere in these notes: usage of “the” is discussed in detail
in Section B.2. Section E.2 discusses whether or not there is an optimal demand function.
Section E.3 establishes that there is at most one optimal demand function if the production
function is strictly concave.

If x∗ is an optimal (profit maximizing) choice given prices (p, w), then x∗ satisfies the
first-order conditions

p
∂f(x∗)

∂xi

= wi for all i ∈ {1, . . . , N − 1}. (2.7)

In particular, this implies that the marginal rate of technical substitution from any good i to
any other good j is equal to marginal rate of substitution in terms of purchase prices,

wi

wj

=

∣∣∣∣∣−
∂f(x∗)
∂xi

∂f(x∗)
∂xj

∣∣∣∣∣ for all i, j ∈ {1, . . . , N − 1}.

For example, suppose i = 1 is capital and j = 2 is labor. If the marginal rate of technical
substitution from capital to labor is small, this means the firm needs few workers to replace
capital and maintain the same level output. The equation says that the firm should replace
capital with workers until the cost of replacing each unit of capital with a worker is no longer
smaller than (i.e. becomes equal to) the productivity gain of replacing capital with workers.
Geometrically, this means that the firm chooses a production plan where the isoquant is
tangential to the isocost line (or isocost hyperplane).
Example 2.1. Suppose that music recordings are produced from the labour of musicians and
technicians. Write down the music company’s profit maximisation problem.
Answer. Let r be the royalties of a song, lm the musician labour input, lt the technician labour
input, wm the musician wage, wt the technician wage, and f(lm, lt) be the number of songs
produced. The music company’s profit maximisation problem is

max
lm,lt

rf(lm, lt)− wmlm − wtlt.

Example 2.2. Glycerine is a by-product of bio-diesel production, both of which are produced
from waste organic material. Write down a bio-energy company’s profit maximisation problem.
Answer. Let w be the waste material input, g(w) the glycerine output, d(w) the bio-diesel
output, pw the price of waste material, pg the price of glycerine, and pd the price of bio-diesel.
The bio-energy company’s profit maximisation problem is

max
w

pgg(w) + pdd(w)− pww.

Example 2.3. PET (polyethylene) plastic is made from ethylene, which is made from crude oil.
Write down the profit maximisation problem of a vertically integrated firm that buys crude
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oil and sells plastic. Write down the first-order condition determining the optimal production
choice.
Answer. Let x be the crude oil input, e = f(x) be the ethylene produced from the x units of
oil, y = g(e) be the plastic output from the e units of ethylene input, px the price of crude oil,
and py be the price of plastic. The integrated firm’s profit maximisation problem is

π(py, px) = max
x

pyg(f(x))− pxx.

The first-order condition for the optimal x choice is

g′(f(x))f ′(x) =
px
py

.

Question 2.6. ✓ Generalise the PET example to accommodate trade in the ethylene market.
Question 2.7. ✓ A fashion company produces dresses and suits using 100% wool and dye.
Write down the fashion company’s profit-maximisation problem.
Question 2.8. ✓ A convenience store buys chocolate bars and milk from a wholesaler, and also
employs cashiers to sell the products. While the cashiers always sell both products, they can
focus more on selling chocolates or milk, e.g. by talking about the products with customers.
Write down the convenience store’s profit maximisation problem. Write down the first-order
conditions. What role do these first-order conditions play when the retail prices are lower then
the wholesale prices?
For similar questions, part (i) of all of the practice exam questions involves (except question
30) formulating a firm’s profit maximisation problem. See also: 7.iii, 15.iii.

2.3 Upper Envelopes and Value Functions
In introductory economics, one important lesson is that the supply curve is equal to the
marginal cost curve. That is, optimal policies are related to marginal valuations. However,
in introductory economics, there was only one market and one price, so supply curves were
simple functions that could be plotted in two dimensions. Now, we want to consider many
markets at once with many prices. This section aims to generalise the relationship between
optimal policies and marginal valuations to a multi-market context.

We begin by studying marginal valuations – how price changes affect the firm’s profit. If
factor prices increase, then the firm’s profit weakly decreases, and if the output price increases,
then profit strictly increases. To say more, we need to study the profit function π, as defined in
(2.6). However, it is unclear how to differentiate π, as max is not a standard calculus operation.
This section studies first and second derivatives when there is a max operator.

Economists frequently use two names for functions with maxima of the form

V (a) = max
b

v(a, b). (2.8)
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The first name is upper envelope, which refers to the geometric interpretation of (2.8),
involving following the outer edge that surrounds (“envelopes”) some curves, as depicted in
Figure 2.3 and Figure 2.4. Specifically, for each b, there is a curve w(a) = v(a, b). The function
V is the outer edge of all of these curves. In Figure 2.4, there is an infinite set of lines (only
some of which are depicted), and the upper envelope is a parabola.

a
(assets)

V (a)

b = study

b = work

Figure 2.3: Value functions are upper en-
velopes

a

V (a)

Figure 2.4: The upper envelope of an infinite
set of lines

The second name is value function, which refers to an economic idea: the value of facing
a situation or state (a) before making a choice (b). Figure 2.3 depicts the value of holding
assets before making a choice between studying or working. The profit function π(p;w) is also
an example of a value function; it is the firm’s value of facing prices (p;w) before it chooses
its input quantities. The term policy or policy function b(a) refers to the optimal choice of
b for each state a, i.e. b(a) ∈ argmaxb̂ v(a, b̂). The input demand function is an example of a
policy. We summarise the terminology:

V ( a︸︷︷︸
state variable

)︸ ︷︷ ︸
value function

= max
b︸︷︷︸

choice variable

v(a, b)︸ ︷︷ ︸
objective function

= v(a, b(a)︸︷︷︸
policy

).

The envelope theorem provides a formula for differentiating value functions. (Actually,
this is the simplest of a large collection of envelope theorems used by economists.)

Theorem 2.1 (Envelope Theorem). Let v : Rn × Rm → R be a differentiable function, V (a) =
maxb∈Rm v(a, b) be its value function (upper envelope), and b(a) be its policy function. If V is
a differentiable function, then

V ′(a) =
∂v(a, b)

∂a

∣∣∣∣
b=b(a)

, (2.9)

or in alternative notation,
V ′(a) = va(a, b(a)). (2.10)
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V (a)

a

V

L

ā

Figure 2.5: The “lazy” envelope theorem
proof .

Lazy decision maker proof of Theorem 2.1. Fix a particular state ā. The value function of a
“lazy” decision maker who chooses b(ā), regardless of a, is

L(a) = v(a, b(ā)), (2.11)

and is depicted in Figure 2.5. The lazy decision maker’s value is weakly less than the rational
value, i.e. L(a) ≤ V (a) for all a. Their values are equal at ā. Therefore āminimises V (a)−L(a),
so the first-order condition gives

V ′(ā) = L′(ā) = v1(ā, b(ā)). (2.12)

Chain rule proof of Theorem 2.1. Let b(a) denote the policy function. We will only prove this
theorem for the case in which the state variable a and choice variable b are one-dimensional,
and the optimal policy b(a) is a differentiable function (although the theorem is true without
these extra assumptions). With this notation, V may be rewritten as V (a) = v(a, b(a)). By
Theorem F.2, the derivative is

V ′(a) =
∂v(a, b)

∂a

∣∣∣∣
b=b(a)

+
∂v(a, b)

∂b

∣∣∣∣
b=b(a)

b′(a). (2.13)

However, since b(a) maximizes v(a, ·), we have the first-order condition

∂v(a, b)

∂b

∣∣∣∣
b=b(a)

= 0.

The last term in (2.13) vanishes, so we are left with (2.9).

For example, consider a manager deciding how many workers l to hire in response to the wage
w. Suppose the manager’s profit function is

π(w) = max
l

10
√
l − wl. (2.14)
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In the jargon we defined above, w is the state variable, l is the choice variable, and π is the
value function. We would like to calculate π′(w).

First we will calculate π′(w) without using the envelope theorem, which we will call the
“obvious method.” The first-order condition for the manager’s choice is

5
1√
l
− w = 0 (2.15)

which means that the policy function is

l(w) =
25

w2
. (2.16)

The value function may be rewritten as

π(w) = 10
√

l(w)− wl(w)

= 10

√
25

w2
− w

25

w2

=
50

w
− 25

w

=
25

w

whose derivative is
π′(w) = − 25

w2
.

Next we will calculate π′(w) using the “envelope theorem method.” The theorem says that

π′(w) =

[
∂

∂w

(
10
√
l − wl

)]
l=l(w)

= [−l]l=l(w)

= −l(w)

Often, this form is all we need. Alternatively, we can substitute in the optimal policy, (2.16)
to conclude that π′(w) = − 25

w2 . Evidently, the envelope theorem approach requires fewer
calculations.

When we used the obvious method, we had to calculate and substitute the policy function
l(w). When we used the envelope theorem method, we did not. We will examine carefully why
this is the case. Henceforth, we will only consider calculating the derivative of π(w) at w = w∗.
Imagine that w∗ is the old wage, and we are interested in studying how a small market wage
increase affects profits. An alert manager would adjust the labour according to the policy
l(w) = 25

w2 . The alert manager’s policy is decreasing, so that l′(w) < 0. Let’s compare the
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alert manager’s profits with a lazy manager who does not adjust the labour at all, and uses
the suboptimal policy l̄(w) = l(w∗) = 25

w∗2 . The lazy manager’s policy is flat, with l̄′(w) = 0.
Clearly, the lazy manager would make less profit than the alert manager. But how much less?
The profit function for the lazy manager is

π̄(w) = 10
√
l̄(w)− wl̄(w) (2.17)

= 10
5

w∗ − w
25

w∗2 , (2.18)

which is less than the alert manager’s profit function. The lazy manager’s marginal profit of
a wage increase (from any w) is

π̄′(w) = − 25

w∗2 , (2.19)

Notice that the lazy manager’s marginal profit, π̄′(w∗) is the same as the alert manager’s
marginal profit π′(w∗)! This explains why we did not need the derivative of the policy func-
tion. Even though the lazy manager makes less profit than the alert manager, the difference
is very small after a small wage change, so the marginal profit is the same. So, when calcu-
lating marginal profits, we can use the lazy manager’s profit function rather than the alert
manager’s profit function, even though the lazy manager’s profit function is (weakly) less than
the alert manager’s profit function. The envelope theorem uses this observation to simplify
the calculations.

Applying the envelope theorem to the profit function (2.6) gives

∂π(p;w)

∂p
= f(x(p;w)) = y(p;w) (2.20)

∂π(p;w)

∂wi

= −xi(p;w). (2.21)

From (2.20), we learn that the marginal profit of an output price increase equals the output
quantity – which is also the marginal revenue of a price increase, holding quantities fixed. We
can interpret (2.21) such that the marginal loss of an input price increase equals the marginal
cost increase. These two formulas relate policy functions to marginal valuations (although not
in an analogous way to marginal cost coinciding with the supply curve, as we will see later in
Section 2.4).

In principle, we might also have expected an indirect effect from a price change: since the
firm changes its quantities, this might also have an effect on the marginal profit. But this
is not the case. The “lazy manager” does not adjust quantities, but has the same marginal
profits as the rational manager.

Our next task is to understand how optimal choices (inputs and output quantities) are
affected by prices. We will use the relationships between optimal policies and marginal valua-
tions that we established above. Just like increasing marginal cost implies an increasing supply
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curve, we will show that convex functions are convex, and hence supply curves are increasing.
The envelope theorem gave us a starting point: the right side of the derivatives in (2.20) and
(2.21) in fact contain the firm’s choices of input and output (which is determined by input
choices). So, rearranging and differentiating again yields

∂y(p;w)

∂p
=

∂2π(p;w)

∂p2
(2.22)

∂xi(p;w)

∂wj

= −∂2π(p;w)

∂wi ∂wj

. (2.23)

What do we know about the second derivatives of the profit function π? One thing we
know is that because π is twice differentiable,

∂xi(p;w)

∂wj

=
∂xj(p;w)

∂wi

= −∂2π(p;w)

∂wi ∂wj

. (2.24)

For example, consider a hospital that uses doctors (xi) and nurses (xj) among other things
as input factors. The equation above establishes a relationship between the hospital’s demand
for these two items. The first term describes by how much demand for doctors increases when
nurses’ wages increase. The second term describes by how much demand for nurses increases
when doctors’ wages increase. The equation says they are equal. If the hospital decides to
hire an extra doctor (and possibly fire some nurses) when nurses’ wages increase by $1, then
the hospital would also decide to hire an extra nurse when doctors’ wages increase by $1.

To say more about the second derivatives of the profit function (and hence the first deriva-
tives of the policy functions), we will need another theorem.
Theorem 2.2. Suppose V is the upper envelope of convex functions, i.e. V (a) = maxb v(a, b)
where v(·, b) is a convex function for each b. Then V is convex.

Algebraic Proof. This proof is illustrated in Figure 2.6. We informally describe the proof
first. Convexity is about comparing intermediate possibilities. For example, two “extreme”
situations might involve having a = $100 and a′ = $1000 in the bank account in the morning,
respectively. How would the value in an intermediate situation when ta + (1 − t)a′ = $400
compare to the values in the extreme situations? If the value function is convex, then the
intermediate values is worse than the corresponding weighted average tV (a) + (1− t)V (a′) of
the extreme values. If the utility function is convex in the state variable, then we claim that
the value function will be convex.

To prove this, we start with the weighted average of the extreme values. These extreme
values are based on the corresponding optimal choices, e.g. living frugally when a = $100
and throwing a party when a′ = $1000. If we replace these extreme values that are based on
optimal choices with a suboptimal choice, then we will reduce the weighted average value. Since
we are interested in the intermediate situation a′′ = $400, we replace the optimal choices for
the extreme situations with the optimal choice for the intermediate situation (which probably
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involves moderate consumption rather than frugal or party-level consumption). After making
this substitution, we are taking the weighted average of the extreme situations using the
intermediate choice. Since the underlying objective function is convex, this is better than the
intermediate situation (of a′′ = $400).

We would like to show tV (a)+ (1− t)V (a′) ≥ V (a′′t ), where we define a′′t = ta+(1− t)a′ as
the convex combination t of a and a′. As usual, let b(a) denote the policy function. Expanding
the left side gives

tV (a) + (1− t)V (a′)

= tv(a, b(a)) + (1− t)v(a′, b(a′))

≥ tv(a, b(a′′t )) + (1− t)v(a′, b(a′)) (since b(a) is best at a)
≥ tv(a, b(a′′t )) + (1− t)v(a′, b(a′′t )) (since b(a′) is best at a′)
≥ v(a′′t , b(a

′′
t )) (since v(·, b(a′′t )) is convex)

= V (a′′t ).

Geometric Proof (Sketch). This proof is illustrated in Figure 2.7. Recall that a function is
convex if and only if its hypergraph (the set of points consisting of the “atmosphere” above
the surface, {(a, c) : c ≥ V (a)}) is convex. A point is in the hypergraph of the upper envelope if
it is in all of the hypergraphs of the underlying functions. That is, the hypergraph of the upper
envelope is the intersection of hypergraphs of the underlying functions. Since the intersection
of convex sets is convex (Theorem D.1), the hypergraph of the upper envelope is convex.

V (a)

a a′′t a′

Figure 2.6: Algebraic Proof of Theorem 2.2

V (a)

a

Figure 2.7: Geometric Proof of Theorem 2.2

We may use the theorem above to establish that the firm’s profit function is convex. The
theorem below uses this to understand how price changes affect the firm’s choices. After an
output price rise, the firm produces more. After an input price rise, the firm reduces its demand
for that good.
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Theorem 2.3. For every production function f , the firm’s profit function π is convex. Hence,
if π is smooth, then

∂y(p;w)

∂p
≥ 0 and ∂xi(p;w)

∂wi

≤ 0 (2.25)

Proof. We first outline the proof. The idea is that if the input (and hence output) quantities
are held constant, then the profits are a linear function of prices. This means is because
profits are based on calculating prices times quantities, both when calculating revenues and
costs. Since linear functions are convex, it follows that for each input choice, profits are a
convex function of prices. Now, the profit function is the upper envelope of each of these linear
functions (one for each possible production plan), so we conclude the profit function is convex.

For every input x∗, we can define a function g(p;w) = pf(x∗) − w · x∗. Taking the upper
envelope of all such g(p;w) functions gives the profit function π. Since each g function is linear
(and hence convex), Theorem 2.2 implies that the profit function π is convex. Thus, we may
apply Theorem D.4 to deduce

∂2

∂p2
π(p;w) ≥ 0 and ∂2

∂w2
i

π(p;w) ≥ 0. (2.26)

Substituting these inequalities into (2.22) and (2.23) gives the desired inequalities.

Example 2.4. Consider a supermarket that buys wholesale food and labour, which it uses to
sell retail food. Some food might get wasted; more labour means less food gets wasted.

(i) Formulate the supermarket’s profit maximisation problem.

(ii) Show that the supermarket’s profit function is convex.

(iii) Show that the supermarket responds to a wholesale price increase by buying less.

Answer.

(i) Notation: Let d denote wholesale food quantity, ϕ wholesale food price, l labour hired,
w wages, f(l, d) retail food sold, and p retail food price. The profit function is

π(p, ϕ, w) =max
l,d

pf(l, d)− wl − ϕd.

(ii) For each possible value of the choice variables (l, d), the firm’s objective is a linear
function of the state variable (p, ϕ, w). Since linear functions are convex, the upper
envelope, π(p, ϕ, w) is convex.
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(iii) By the envelope theorem,

∂π(p, ϕ, w)

∂ϕ
=

∂

∂ϕ
[pf(l, d)− ϕd− wl]l=l(p,ϕ,w),d=d(p,ϕ,w) = −d(p, ϕ, w),

Where l(p, ϕ, w) and d(p, ϕ, w) are the labour demand and wholesale food demand poli-
cies. Differentiating and multiplying by −1 on both sides gives

−∂2π(p, ϕ, w)

ϕ2
=

∂d(p, ϕ, w)

∂ϕ
.

Since π is convex, the left side is negative. Thus, the right side is negative, so the sales
policy is decreasing in the wholesale price ϕ.

The important lessons of this section are:

• The envelope theorem provides a formula for differentiating value functions, such as
profit functions.

• The envelope formula provides a relationship between the derivative of the value function
and the policy function. (Although we have not yet encountered the marginal cost curve
coinciding with the supply curve.)

• If the decision-maker’s problem is convex (i.e. satisfies all the convexity assumptions we
need), then the value function is convex. This means the second derivatives (differenti-
ating with respect to the same variable twice) of the value function are positive. This
allowed us to deduce the signs of the derivatives of the policy function in the profit
maximization problem.

• We did not need to make any assumptions about the production function to deduce that
the profit function is convex. The convexity assumptions arise from the fact that prices
are linear, i.e. each unit is charged at the same price.

Question 2.9. ✓ In classic undergraduate producer theory, profit π is a function of price P
and output quantity Q,

π(P,Q) = TR(P,Q)− TC(Q),

where total revenue is TR(P,Q) = PQ, and TC(Q) is the cost of producing Q.

(i) Using the envelope theorem where possible, derive formulas for how revenue and profit
change after a marginal price increase, i.e.

d

dP
π(P,Q(P )),

where Q(P ) is the output choice at price P . (Hint: if you are rusty on your calculus
notation for total derivatives, you might find it helpful to write g(P ) = π(P,Q(P )), and
calculate the derivative g′(P ).)



2.4. COST FUNCTIONS AND DYNAMIC PROGRAMMING 27

(ii) Using algebra and words, explain the effect that the envelope theorem ruled out in part
(i).

Question 2.10. ✓ Show that the firm’s optimal policies are unresponsive to “inflation”, i.e.
all prices increasing by the same proportion. Show that inflation increases (nominal) profits.
Do your answers suggest that a firm has an incentive to cause inflation (perhaps by bribing
politicians)?
Question 2.11. ✓ A solar panel manufacturer uses knowledge, labor and silicon to make solar
panels. Labor and silicon are acquired at market prices. However the firm can not acquire
new knowledge – it is stuck with whatever it is endowed with.

(i) Write down a mathematical model that represents the firm’s profit maximization prob-
lem.

(ii) What is the marginal profit of knowledge to the firm? Your answer should take into
account that if the firm’s knowledge increases, it might decide to change its production
decision.

For more similar questions, see the following practice exam questions: 3.iv, 3.v, 6.iii, 6.iv, 9.iii,
12.iv, 15.iv, 16.iii, 18.iii, 18.iv, 24.a.iii, 25.iii, 27.a.ii, 28.iv, 29.a.ii, 31.a.iv, 33.iii.

2.4 Cost Functions and Dynamic Programming
The firm’s profit maximization problem is complicated, because it chooses the quantities of
both input goods and the output good. So far, these complications have prevented us from
constructing a marginal cost curve, and relating marginal cost to the output policy (supply
curve). In this section, we will finally address this problem. To simplify our analysis, we now
introduce an important technique known as dynamic programming, which was developed
by Bellman (1957) and is widely used in economics and also many other fields. The idea is to
split the firm’s complicated profit maximization problem into two sub-problems, one in which
the firm chooses output only, and the other in which the firm chooses its inputs only. Of course,
it is not possible to completely separate the two choices, but with dynamic programming we
can come very close to achieving this. Having smaller and simpler problems allows us to answer
questions such as: what is the marginal cost of production, and how do marginal increases in
targeted output affect input demands?

Recall the firm’s profit function

π(p;w) = max
x∈RN−1

+

pf(x)− w · x. (2.27)

In this problem, the firm is effectively choosing both its inputs x and its output f(x) at the
same time. We can decompose the problem into two problems where inputs and output are
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chosen separately. The cost function c gives the cost of producing a particular output quantity:

c(y;w) = min
x∈RN−1

+

w · x (2.28)

s.t. f(x) ≥ y. (2.29)

The decision in the cost minimisation problem only involves input choices; output (y) has
already been chosen. Notice that the cost function is a value function – it is the value of
the firm, excluding revenues, after it has learned the market prices and has committed to an
output quantity.

The profit function can now be rewritten in terms of the cost function:

π(p;w) =max
y∈R+

py − c(y;w). (2.30)

In this reformulation of the profit function, the firm only chooses output. We were able to
simplify the firm’s profit maximization problem by burying some of the decisions inside the cost
function. The simplified formula for the profit function in (2.30) is an example of a Bellman
equation which lies at the heart of dynamic programming.

The lesson of dynamic programming can be summarised as: a complicated value function
with many decisions can be simplified by burying some of the decisions inside another value
function. In computer networking, the problem of choosing the fastest route for sending
messages between two computers can be simplified with dynamic programming. Dijkstra
(1959) noticed that the problem can be broken down into smaller problems by first calculating
the value (speed) of all directly connected computers, and then adjusting for the speed of the
direct links. The problem of finding the best route from the neighbouring computer to the
target is buried inside a value function.

In genetics, the problem of determining the most likely sequence of mutations between
a pair of genes can be simplified with dynamic programming with what is known as the
Needleman and Wunsch (1970) algorithm. Comparing two long DNA sequences is a daunting
task. But the problem may be split up into (many) smaller problems. It is easy to compare
two nucleotides (one from each gene), and the comparisons of all the other nucleotides can be
buried inside a value function.

In economics, the most important application of dynamic programming is in macroeco-
nomics in which a consumer has to choose their consumption for each day of the rest of their
life. This complicated problem can be decomposed into choosing the consumption today and
savings for tomorrow. The consumption choices from tomorrow onwards are buried inside the
value of saving today.

But for the moment, we will only study the firm’s profit maximization problem. One step
we did not check was whether the Bellman equation (2.30) gives the right answer – it should
match the value function (2.27). This step is known as verifying the principle of optimality.
Lemma 2.1 (Principle of Optimality). The definitions of the profit function π(p;w), in (2.27)
and (2.30) are equivalent.
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Proof. The proof involves patiently transforming the formula for the value function into the
Bellman equation. The key trick is to add a new “choice” of output y, which initially is no
choice at all, because it is completely determined by the input. But when the input is chosen
after the output, the separate choice of output becomes meaningful.

max
x∈RN−1

+

pf(x)− w · x = max
y∈R+,x∈RN−1

+

pf(x)− w · x (2.31)

s.t. f(x) = y (2.32)

=max
y∈R+

 max
x∈RN−1

+

py − w · x

s.t. f(x) = y

 (2.33)

=max
y∈R+

py −

 min
x∈RN−1

+

w · x

s.t. f(x) = y

 (2.34)

=max
y∈R+

py − c(y;w) (2.35)

The Bellman equation (2.30) buries the complicated input choices inside the cost function c,
and allows us to focus on just one choice: output. This allows us to establish the classical
“price equals marginal cost” formula.

Theorem 2.4. If y(p;w) is the optimal supply policy in (2.27), then for all prices (p, w),

p =
∂c(y;w)

∂y

∣∣∣∣
y=y(p;w)

. (2.36)

Proof. By the principle of optimality (Lemma 2.1), the profit function (2.27) can be rewritten
in terms of the cost function, (2.30). The first-order condition of this reformulated profit
function with respect to output y is

∂

∂y
[py − c(y;w)]

∣∣∣∣
y=y(p;w)

= 0, (2.37)

which simplifes to (2.36).

This result shows how useful dynamic programming is: it allowed us to simplify a complicated
problem back into something very simple and familiar.
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We can also re-apply the envelope theorem to study how profits and output are affected
by price changes:

∂π(p;w)

∂p
=

[
∂

∂p
(py − c(y, w))

]
y=y(p;w)

= y(p;w) (2.38)

∂π(p;w)

∂wi

=

[
∂

∂wi

(py − c(y, w))

]
y=y(p;w)

= − ∂c(y;w)

∂wi

∣∣∣∣
y=y(p;w)

. (2.39)

We do not learn anything new from the first equation, (2.38). However, the second equation
(2.39) does tell us something: when factor prices increase, profits go down in proportion to
the consequent increase in production cost.
Question 2.12. ✓ Let p be the sale price of output, k be capital which is rented at price r, and
labour l which is paid a wage w. Consider the Cobb and Douglas (1928) production function
y = f(k, l) = kalb.
(i) Write down the firm’s profit function.

(ii) Write down a Bellman equation in which the firm chooses output (and input is buried
inside a value function).

(iii) Derive the optimal capital and labour choices k(y; r, w) and l(y; r, w). Note: the algebra
requires a lot of patience, so please don’t try this alone! It is worth doing, as it will help
convince you that you understand all of the tools.

Question 2.13. ✓ Continuing Question 2.11 about Solar panel manufacturing, suppose that
the production function is linear in knowledge. Would the firm choose to produce more when
it is endowed with more knowledge? What assumptions in your model are important for your
conclusion?
Question 2.14. ✓ There are two ways to run a dairy farm. The traditional way is to milk
each cow by manually herding the cows and attaching a hose. The modern way involves
buying a big rotary machine where the cows walk in, spend half an hour in the machine, and
walk out in a completely automated process. Assume that the marginal product of the rotary
machine (i.e. the difference in output between machine and no-machine, holding cows and
labour fixed) is increasing in cows and labour. Rotary machines are big and expensive, and
can service hundreds of cows.

(i) Formulate the farm’s profit maximisation problem.

(ii) Henceforth, assume that the two dairy technologies are concave in all inputs, except for
the (indivisible) rotary machine. Sketch a graph of the marginal cost of milk.

(iii) When the price of milk increases, does labour demand increase or decrease?

For more similar questions, see the following practice exam questions: 2.ii, 8.iii.a, 8.iii.b, 9,
21.a.ii, 22.iii, 23.iii, 24.a.ii, 31.a.ii, 31.a.iii, 32.iii, 32.iv, 33.iv, 34.ii, 34.iii, 34.iv.
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2.5 Upper Envelopes with Constraints
Section 2.3 developed some mathematical tools for studying value and policy functions such
as the profit and the input demand functions. However, the theorems assume that the opti-
mization problem is unconstrained and can not accommodate the output target constraint in
the cost function. This section resolves this problem by generalizing the theorems. These new
tools will allow us to prove that marginal cost of production is increasing when the production
function is concave.

First, we generalize the value function from (2.8) to accommodate constrained problems:

V (a) =max
b

v(a, b)

s.t. w(a, b) ≥ 0.
(2.40)

The policy function b(a) may be solved in the usual way with the Lagrange theorem. The
Lagrangian is

L(a, b, λ) = v(a, b) + λw(a, b).

At an optimal choice b(a), the Lagrange theorem implies that there is a Lagrange multiplier
λ(a) ≥ 0 such that following first-order condition is satisfied[

∂L(a, b, λ)

∂b

]
b=b(a),λ=λ(a)

= 0.

Expanding this gives [
∂v(a, b)

∂b
+ λ

∂w(a, b)

∂b

]
b=b(a),λ=λ(a)

= 0. (2.41)

The constrained envelope theorem uses this theory to give a formula for the marginal value
function, V ′(a).
Theorem 2.5 (Constrained Envelope Theorem). If V (·), v(·, ·), w(·), b(·), and λ(·) (as defined
above) are continuously differentiable functions, and

∂w(a, b)

∂b
6= 0 for all (a, b(a)), (2.42)

and if the constraint binds at (a, b(a)), then

V ′(a) =

[
∂v(a, b)

∂a
+ λ

∂w(a, b)

∂a

]
b=b(a),λ=λ(a)

. (2.43)

Proof. The max operation (and its constraint) in the formula for the value function, (2.40)
may be removed by substituting in the policy function:

V (a) = v(a, b(a)).
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The idea behind Lagrange multipliers is to add a term that represents the marginal cost of
satisfying the constraint. Since we assume that the constraint always binds, i.e. w(a, b(a)) = 0,
it is correct to write

V (a) = v(a, b(a)) + λ(a)w(a, b(a)) = L(a, b(a), λ(a)).

This term accounts for marginal changes in the constraint (i.e. replacing the 0 on the right
side of the constraint with a slightly different number). So it is intuitive that this extra term
might help with a proof.

Differentiating gives

V ′(a) =

[
∂L(a, b, λ)

∂a
+

∂L(a, b, λ)

∂b
b′(a) +

∂L(a, b, λ)

∂λ
λ′(a)

]
b=b(a),λ=λ(a)

.

The second term is 0 by the first-order condition (2.41). The last term is 0 as it contains
w(a, b(a)) which is 0 because we assumed the constraint binds. Expanding the remaining term
gives (2.43).

We now take first-order conditions and apply the envelope theorem to the cost function (2.28).
The Lagrangian of the cost function is:

L(y, w, x, λ) = w · x− λ[f(x)− y]. (2.44)

The first-order condition of the Lagrangian (as in (2.41)) is[
∂

∂xi

L(x, λ; y, w)

]
x=x(y,w),λ=λ(y,w)

= 0 (2.45)

which simplifies to
wi = λ(y;w)

∂f(x)

∂xi

∣∣∣∣
x=x(y;w)

(2.46)

(Note that this calculation involved an extra minus sign because the cost function involves a
minimization.) Applying the constrained envelope theorem to the cost function gives

∂c(y;w)

∂y
=

∂

∂y
[w · x− λ(f(x)− y)]

∣∣∣∣
x=x(y;w),λ=λ(y;w)

= λ(y;w) (2.47)

∂c(y;w)

∂wi

=
∂

∂wi

[w · x− λ(f(x)− y)]

∣∣∣∣
x=x(y;w),λ=λ(y;w)

= xi(y;w). (2.48)

We now interpret these three equations. The second equation (2.47) is fundamental to the
theory of Lagrange multipliers. It says that the marginal cost of increasing the production
target (i.e. tightening the production target constraint) is equal to the Lagrange multiplier. In
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other words, increasing the production target comes at a price λ. However, this is an implicit
price not determined directly from market transactions. This is why the Lagrange multiplier
is often called the shadow price of the constraint.

The third equation, (2.48) is sometimes called Shephard’s lemma, and is a slight re-
statement of (2.21). It says that the marginal effect of a price increase of input i is the extra
expenditure required to buy input i keeping the demand fixed. Even though the firm will
decrease its demand for input i (and substitute to other inputs), this effect is too small to
dampen the cost increase.

The first equation, (2.46) includes a Lagrange multiplier which we interpreted as the
marginal cost of output. The left side of the first equation, is the marginal expenditure of
increasing input i. The right side is the marginal cost of the extra output created by this
input.

In Section 2.3, we used the fact that the envelope equations relates the policy function to
the derivative of the value function to learn more about the policy function. Similar to before,
we deduce that

∂xi(y;w)

∂wj

=
∂xj(y;w)

∂wi

=
∂2c(y;w)

∂wi ∂wj

. (2.49)

These equations are almost identical to (2.24); only the state variables are different. Before,
the policy was a function of prices; here the policy is a function of the output target y and
input prices w.

Under much more stringent (and incompatible) conditions compared to before, we show
that value functions are convex or concave.
Theorem 2.6. In the notation of (2.40), if v is convex, and w is quasi-concave, then

V (a) =min
b

v(a, b) (2.50)

s.t. w(a, b) ≥ 0 (2.51)

is convex. Similarly, if v is concave, and w is quasi-concave, then

V̄ (a) =max
b

v(a, b) (2.52)

s.t. w(a, b) ≥ 0 (2.53)

is concave.
To understand this theorem, it is helpful to think of it in terms of cost functions, where a is the
production target and b is the production plan. The condition that w is quasi-concave means
that intermediate production plans must meet intermediate production targets, i.e. if you take
a convex combination of two different optimal production plans, then this will produce at least
as much as the convex combination of the outputs.
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Proof. We prove the first part only. (The second part is analogous.) This proof is similar to
the proof of Theorem 2.2. We sketch the intuition first, based on an example of having two
extreme situations involving production targets of 100 and 1000 meals respectively. Suppose
that 5 chefs are needed for 100 meals, and 95 chefs are needed for 1000 meals. We want to
prove that the cost of an intermediate 550 meals is lower than the average of the costs of the
extreme targets. The previous proof does not apply directly, because it was based on using the
intermediate choice in the extreme situations. This was not a problem in the unconstrained
problem, but it is a problem here, because the intermediate number of chefs (e.g. 50) will not
meet the higher production target of 1000 of meals.

Instead, we consider taking an average number of chefs (55) for an intermediate target of
550. Specifically, we start with the (weighted) average of the costs from the extreme targets.
Then we consider the intermediate target (550 meals) with the average production plan (55
chefs). Since the constraint (i.e. the production function) is quasi-concave, 55 chefs meets or
exceed the intermediate target of 400. Moreover, since the objective is convex, the cost of the
achieving the intermediate target of 550 with the average production plan (of 55 chefs) is at
least as good as the average of the extreme costs (of making 100 and 1000 meals). Finally, the
average production plan (of 55 chefs) is inferior to the optimal intermediate production plan
(of 50 chefs). We conclude that the average costs of the extreme targets is higher than the
cost of any intermediate target.

The proof is depicted in Figure 2.8. We would like to establish that

tV (a) + (1− t)V (a′) ≥ V (ta+ (1− t)a′), (2.54)

meaning that the line connecting the costs (values) between a and a′ lies above the V curve.
The left side can be interpreted as the cost when (linearly) interpolating between the cost of a
and the cost of a′. The right side is the cost when making the optimal choice, b(ta+(1− t)a′).
It will be helpful to consider another choice, l(t) = tb(a) + (1 − t)b(a′), which we call the
interpolation policy; it makes choices between the two optimal choices b(a) and b(a′). We will
establish (2.54) via the following steps:

tV (a) + (1− t)V (a′) (2.55)
= tv(a, b(a)) + (1− t)v(a′, b(a′)) (2.56)
≥ v(ta+ (1− t)a′, l(t)) (2.57)
≥ v(ta+ (1− t)a′, b(ta+ (1− t)a′)) (2.58)
= V (ta+ (1− t)a′). (2.59)

The first and last equations are true because V (a) = v(a, b(a)) for all a. The first inequality
follows because v is convex. The second inequality follows because the decision-maker would
reject l(t) in favour of the optimal choice b(ta+ (1− t)a′). (We know that l(t) was considered
and rejected, because (i) w is quasi-concave which implies that (ii) l(t) is feasible at state
ta+ (1− t)a′.)
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V (a)

a ta+ (1− t)a′ a′

Figure 2.8: Proof of Theorem 2.6. The middle curve is the cost of the interpolation policy. The
bottom curve is the cost of the optimal policy.

It seems like the constrained version of the theorem (Theorem 2.6) contradicts the uncon-
strained version (Theorem 2.2). The constrained version establishes that the value function is
concave when maximising a concave objective, yet the unconstrained version establishes that
the value function is convex when maximising a convex objective. But if an objective is linear,
then it is both concave and convex. How can both be right?

To make the two theorems more comparable, consider the null constraint that is always
satisfied, i.e. w(a, b) = 0. In this case, the theorems compare as follows:

• Simplified constrained theorem: if v is concave, then V (a) = maxbv(a, b) is concave.

• Unconstrained theorem: if v(a, b) is convex in a, then V (a) = maxbv(a, b) is convex.

There are two important differences:

• The simplified constrained theorem requires the objective to be concave in (a, b), whereas
the unconstrained theorem only requires convexity in a.

• Both make a shape assumption that mirrors the conclusion (concave implies concave,
convex implies convex).

The key to understanding the constrained theorem is that the concavity in (a, b) means
that when you look at V (a) and V (a′) and some point in the middle V (a′′), there is some
choice b(a′′) in the middle that makes a′′ better than just doing b(a) or b(a′). This is not the
case for the unconstrained theorem.
Question 2.15. ✓ Sketch a geometric proof of Theorem 2.6.
We now apply Theorem 2.6 to establish that the cost function is convex with respect to output
so that marginal cost is weakly increasing.
Theorem 2.7. If the production function f is concave, then the cost function is convex in
output, i.e. c(·;w) is convex for all w.
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Proof. It is important to realise that the theorem does not claim that c(y;w) is convex in w.
The proof relies on holding w fixed, because w · x is not convex in (w, x).

Recall that the cost function is

c(y;w) = min
x∈RN−1

+

w · x

s.t. f(x) ≥ y.

The constraint is quasi-concave because (x, y) 7→ f(x) − y is concave. The objective is linear
in (x, y), and hence convex in (x, y). Thus the first part of Theorem 2.6 implies that c(·;w) is
convex for all w.

Example 2.5. A chocolate manufacturer uses cocoa and rents machines to produce chocolate
bars. When the chocolate is cut into bars, the off-cuts are collected, and can be used to make
more chocolate bars. However, this process is difficult to implement, and requires experimen-
tation. The factory uses cocoa and machines to experiment, which produces knowledge of how
to re-use offcuts. The more knowledge there manufacturer has, the less off-cuts go to waste.

(i) Write down the firm’s problem, without using any Bellman equations.

(ii) Write down the firm’s problem using two Bellman equations relating three value func-
tions: the cost function, the (post-experimentation) profit function, and the value of
experimentation.

(iii) Show that as the price of cocoa increases, the manufacturer decreases the amount of
cocoa it uses.

Answer. Notation: pR price of raw cocoa, pM rental price of machines, k knowledge, (rx,mx)
resources allocated to experimentation, (ry,my) resources allocated to output production,
chocolate bar output y = f(k, ry,my), py price of chocolate bars, k = g(rx,mx) knowledge
“discovered”.

(i) The firm’s problem can be written, without any Bellman equations, as follows:

V (py; pr, pm) = max
ry ,rx,my ,mx

pyf(g(rx,mx), ry,my)− pr(rx + ry)− pm(mx +my). (2.60)

(ii) Let

C(y; k, pr, pm) = min
ry ,my

prry + pmmy (2.61)

s.t. f(k, ry,my) = y (2.62)
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be the cost function, π(k, py, pr, pm) the post-experimentation profit function, and V (py; pr, pm)
the pre-experimentation profit function. The latter two can be defined with Bellman
equations:

π(k, py, pr, pm) = max
y

pyy − C(y; k, pr, pm) (2.63)

V (py; pr, pm) = max
rx,mx

π(g(rx,mx), py, pr, pm)− prrx − pmmx. (2.64)

(iii) Dynamic programming does not help with this part. Applying the envelope theorem to
(2.60) gives

∂V (py; pr, pm)

∂pr
= −rx(py, pr, pm)− ry(py, pr, pm), (2.65)

where the right side denotes the optimal demand policies function for raw cocoa. V (py; ·, pm)
is the upper envelope of convex functions,

h(pr; rx, ry,mx,my) = pyf(g(rx,mx), ry,my)− pr(rx + ry)− pm(mx +my).

So Theorem 2.2 implies V (py; ·, pm) is convex. Therefore, its derivative (the left side of
(2.65)) is increasing in the price of raw cocoa. We conclude that the right side is also
increasing, and hence the raw cocoa demand is decreasing in the price of cocoa.

Question 2.16. ✓ A studio has two artists. Each artist uses time and materials to produce
art. The old artist is twice as productive as the young artist (i.e. if the old artist has the same
amount of time and material as the young artist, it produces twice the amount of art.) Both
artists are paid the same wage per hour. Assume that the artists’ production functions are
concave.

(i) Write down the studio’s profit function.

(ii) Write down a Bellman equation for the firm that buries the material and labour choices
inside a value function.

(iii) Which artist would the studio prefer to produce more?

(iv) Draw a graph involving isoquants and isocosts in which the firm allocates the less pro-
ductive artist more materials.

(v) If the studio could spend a pound to increase one of the artists’ output by 0.01 paintings,
which artist would it spend it on?
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Question 2.17. ✓ An inefficient Australian car manufacturer is unprofitable, so it would like
to bribe some Australian politicians to reduce its car sales tax rate for this manufacturer only.
The firm believes that $1000 of bribes will lead to a one percentage point decrease in the tax
rate on cars. If the firm spends enough, then a subsidy is possible. Cars are manufactured out
of capital and labor according to a concave production function. Assume that the manufacturer
is small, so a tax change does not affect prices.

(i) Write down the firm’s profit function (without bribes).

(ii) Write down the firm’s profit function with bribes, incorporating your answer from the
first part into a Bellman equation.

(iii) What is the marginal profit of bribes?

(iv) Do bribes increase the firm’s output?

(v) The firm would like to give the politician an argument to rationalise cutting tax rates.
One suggestion was: perhaps cutting the tax rate would increase the firm’s employment
of Australian workers. Is this necessarily the case?

For more similar questions, see the following practice exam questions: 2.v, 2.vi, 8.iii.c, 8.iii.d,
22.iii, 23.iv, 24.a.iv, 26.iv, 26.v, 27.a.iii, 28.iii, 29.a.iv.

2.6 *Production Technology Sets
The production function formulation of technology is unable to capture simultaneous produc-
tion of several goods. For example, if two companies that make two different things merge, two
production functions would be needed to represent the merged company’s feasible choices. A
more abstract way of representing technology is with production plan sets. A production
plan is a vector y ∈ RN , where yi denotes the net output of good i. If yi < 0, then good i
is a factor of production. The firm can choose any production plan from Y ⊂ RN , the set of
feasible production plans.

Previously, we studied production functions which can only have a single output good. If a
production set Y only has one output – say the first good, then the corresponding production
function can be written as

f(x) = max {y : (y,−x) ∈ Y } . (2.66)

For example, think about making toast. If I want to make one slice, I just take a slice
of bread out of my fridge, and put it in the toaster. So perhaps I should say there are two
commodities (and write N = 2) toast and bread, and I have a technology y = (1,−1) that
transforms the input bread (−1) into an output toast (1). But what if I want to make 100 or
100,000 slices of toast? Then I will need to borrow more toasters and watch my power bills!
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So, perhaps I need four commodities (N = 4) – toast, bread, electricity, and toasters,
and I have a technology y = (1,−1,−1,−1) that transforms a slice of bread, a unit of
electricity, and a toaster, into some toast. If I want to make 100 slices of toast, I have a
technology for that too: y′ = (100,−100,−100,−100). My feasible technology set would be
Y = {(n,−n,−n,−n) : n ∈ R+}.

However, there is an important difference between bread and toasters. Both are factors of
production, but the production process destroys the bread but not the toaster. The technology
notation we developed only allows us to net outputs of a technology. Is there a way we can
model capital which is not destroyed by production?

One way is to reinterpret Y by saying that commodity y4 refers to the service of using a
toaster for one unit of time (rather than the toaster itself).

Another way is to think about two types of toasters: toasters before, and toaster after
production. If we use a toaster for production, then a by-product is a used toaster. This corre-
sponds to the production technology y′′ = (1,−1,−1,−1, 1). If we leave a toaster idle, then we
also get to keep it, which gives the technology y′′′ = (0, 0, 0,−1, 1). Since we can use or leave idle
any number of toasters, the feasible technology set is Y ′ = {a(1,−1,−1,−1, 1) + b(0, 0, 0,−1, 1) : a, b ∈ R+}.

A technology y ∈ Y is efficient if there is no other feasible technology y′ ∈ Y such that
y′ > y (i.e. that either produces more outputs or uses less inputs).
Question 2.18. ✓ Write down a feasible technology set for cleaning up toxic waste with these
properties: (1) the waste must be transferred to a waste dump with a limited capacity, (2)
cleaning up pollution requires chemicals and the services of engineers in proportion to the
amount of waste, (3) engineers are unable to work in teams of more than 10 people.
Question 2.19. ✓ Write down a feasible technology set for putting on a comedy show with
these properties: (1) before doing the show, the comedian must use some time to prepare
an act, (2) the comedian can put on one show each day of one week, and (3) each day, the
comedian may hire a small or large theatre.
Question 2.20. ✓ It seems wasteful to use two toasters to make one slice of toast. So, if our
model is good, using a redundant toaster should be inefficient. Is this the case in the two
formulations of the toasting technology?
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Chapter 3

Consumption

This chapter develops a theory of consumers in perfectly competitive markets, which means
that consumers can’t manipulate prices by limiting their demand.1 Consumer theory is more
complicated than producer theory because consumers may have intricate preferences rather
than a simple profit maximisation objective. For example, a factor price decrease causes firms
to increase their demand for that good. The analogous statement for consumers is not true:
a price decrease of a good may cause the consumer to decrease their demand! This chapter
applies the techniques of dynamic programming, the envelope theorem and convex analysis
to derive the Slutsky equation, which decomposes the effect of price changes into income and
substitution effects.

This chapter begins in Section 3.1 by asking whether it makes sense to think about con-
sumers preferences in terms of utility functions. Then Section 3.2 presents the consumer’s
utility maximisation problem in a perfectly competitive context. Section 3.3 applies the enve-
lope theorem to the consumer’s value function, but only obtains a tangled formula due to the
presence of income and substitution effects. Section 3.4 uses dynamic programming to shut
down the income effect by holding utility fixed. Finally, Section 3.5 decomposes the consumer’s
demand policy into income and substitution effects.

3.1 Utility Functions
We will think of consumers as decision makers that maximise a utility function, primarily
because utility functions are convenient to do mathematics with. But where do utility functions
come from? We certainly can not measure utility directly. Unless we resort to some kind of
mind reading technology like magnetic resonance imaging, the best we measurement we could
hope for would be a very long survey with questions like:

1Unlike firms limiting supply, consumers limiting demand is not something economists worry about so much
because each buyer is typically competing with many other buyers. However, in bilateral bargaining situations,
buyers might pretend that they do not like or want a product very much.

41
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(i) Would you prefer to live in a three bedroom apartment in Leith or a two bedroom
apartment in New Town?

(ii) Would you prefer chocolate pudding with ice cream or tarte tatin for dessert?

(iii) Would you prefer a two week holiday in Thailand or a three week holiday in Brazil?
What if it were a 2.01 or 1.99 week holiday in Thailand instead?

(iv) If you went on a holiday to Thailand, would you prefer a chocolate pudding or a tarte
tatin during your visit?

The survey would need to include an infinite number of questions like this to know somebody’s
preferences accurately. In this section, we will imagine that we have access to this survey data.
We will show that it is possible to summarise each person’s survey with a utility function.
This means that it is possible for us to study economics pretending that consumers have
utility functions (or happiness functions) because we would reach the same conclusions if we
worked with survey data instead. However, these utility functions do not quantify the intensity
of preferences, so they do not quantitatively measure “happiness” (or anything else).

As before, suppose there are N goods with possible consumption quantities being x ∈ RN
+ .

A preference relation formalises the idea of a person’s survey.
Definition 3.1. Consider two possible choices, x, y ∈ RN

+ . If a consumer weakly prefers x to
y, then we write x ≿ y. We say that a consumer strictly prefers x to y, denoted x � y, if
x ≿ y and y 6≿ x. We say that a consumer is indifferent between x and y, denoted x ∼ y if
x ≿ y and y ≿ x.
A utility function is a simple way of representing preferences.
Definition 3.2. A utility function is a function u : RN

+ → R. We say that u is a represen-
tation of the preferences ≿ if for all choices x, y ∈ RN

+ , the utility function and preference
relation agree, i.e. x ≿ y if and only if u(x) ≥ u(y).
If there is any chance that the preferences ≿ have a utility representation, then they must
satisfy these properties (which are all satisfied by utility functions):

• complete: for all choices x, y ∈ RN
+ , either x ≿ y or y ≿ x (or both).

• reflexive: for all choices x ∈ RN
+ , x ≿ x (or equivalently, x ∼ x).

• transitive: for all choices x, y, z ∈ RN
+ , if x ≿ y and y ≿ z then x ≿ z.

Moreover, if there is any chance that the preferences ≿ have a continuous utility representation,
then they must also satisfy this property (which is satisfied by continuous utility functions):

• *continuous: all upper and lower contour sets are closed. (An upper contour set in
this context is U(x) =

{
y ∈ RN

+ : y ≿ x
}
.)
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Theorem 3.1 (*). Consider a preference relation ≿. There exists some continuous utility
presentation u : RN

+ → R of ≿ if and only if ≿ is complete, reflexive, transitive, and continuous.
The proof of this theorem boils down to: are there enough real numbers to rank all of the
choices we have in a continuous way? Since there is little economic content in this question,
skip proving it.

Does a utility function quantify happiness (or anything else)? The following theorem
establishes that this can not be the case, because every preference relation has many utility
functions that represent it.
Theorem 3.2. Consider a preference relation≿ over the choices in RN

+ and any strictly increasing
function f : R → R. If the utility function u : RN

+ → R represents ≿, then so does v(x) =
f(u(x)).
This theorem also implies that concavity of the utility function does not have a corresponding
property in terms of preferences. The following exercise asks you to explore why this is the
case. On the other hand, it is straight-forward to check that a utility function is quasi-concave
if and only if the preferences it represents ≿ are convex.

• convexity: all upper contour sets are convex. This means the consumer has a preference
for diversity. If the consumer is indifferent between x and y (i.e. x ∼ y), then any
mixture z = tx+ (1− t)y is better, i.e. z ≿ x and z ≿ y.

Question 3.1. ✓ Consider the concave utility function u(x, y) =
√
xy. Find a non-concave

utility function that represents the same preferences.
Question 3.2. ✓ You are day-dreaming about your anticipated dessert consumption for today
and tomorrow. You figure out that you are impatient, and are only willing to sacrifice n
servings today in order to gain 1.5n servings tomorrow. Write down a utility function to
represent these preferences.
Question 3.3. ✓ Suppose that a chocolate box x consists of x1 grams of chocolate and x2

grams of colourful packaging. Suppose the consumer has lexicographic preferences in
which (x1, x2) ≿ (y1, y2) if

(i) either x1 > y1

(ii) or there is a tie with x1 = y1, and x2 > y2.

That is, when deciding whether to buy chocolate box x or y, the consumer only cares about
the amount of packaging if the amount of chocolate is the same. Otherwise, they prefer the
box with more chocolate. (Note that these preferences are not continuous, so Theorem 3.1
implies that they can not be represented by a continuous utility function. In fact, they can
not be represented by any utility function.)

(i) Sketch an upper contour set.
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(ii) Show that each indifference curve contains only one choice.

Question 3.4. ✓ You are planning a holiday which includes a destination d ∈ {Thailand,Brazil}
and a duration of n ∈ R+ days. Suppose that you:

(i) prefer longer holiday trips, and

(ii) are indifferent between an n-day visit to Brazil and an 1.1n day visit to Thailand.

Write down a utility function to represent these preferences.

3.2 Utility Maximization
The consumer’s problem is to choose how much to consume x in order to maximize utility
subject to a budget constraint determined by prices p and money m. The value function is2

v(p,m) =max
x∈Rn

+

u(x) = u(x(p,m)) (3.1)

s.t. p · x ≤ m, (3.2)

where the x(p,m) policy is the consumer’s demand function.3 At face value the budget
constraint, looks straightforward: the consumer’s expenditure on his purchases should not
exceed his wealth. However, there is a subtle but important issue that we have overlooked:
where does the consumer’s wealth and/or money come from? Should it not come from parents,
inheritance, wages, loans, investments, and the like? One way to model this would be to assume
that the consumer has an endowment of goods e ∈ Rn

+. For example, the consumer might
be endowed with some time which can be either consumed for leisure or traded on the labor
market for a wage. This reformulation of the consumer’s problem leads to the value function4

v∗(p, e) =max
x∈Rn

+

u(x) (3.3)

s.t. p · x ≤ p · e. (3.4)

The new budget constraint requires that the consumer does not spend more than he earns by
selling his endowment. If the consumer consumes some if his endowment, then one interpre-
tation is that he sells the endowment first, and then buys some of it back later. Alternatively,
the budget constraint can be written as p · (x− e) ≤ 0.

The endowments approach to the budget constraint is more rigorous because it gives an
(admittedly crude) explanation of where wealth comes from rather than simply assuming it:
wealth is p · e. In fact, wealth depends on prices, something the money approach to the

2The traditional name of this particular value function is the indirect utility function.
3This demand function is sometimes called the Marshallian demand function.
4This value function is sometimes called the indirect utility function.
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budget constraint overlooks. Depending on the research question, this deficiency of the money
approach may or may not matter. We will develop the money approach here for simplicity,
but the tools are the same and you will feel comfortable with both approaches by the end of
the chapter.

The first-order condition for the consumer’s demand is:[
∂u(x)

∂xi

− λpi

]
x=x(p;m),λ=λ(p;m)

= 0, (3.5)

where λ(p;m) is the Lagrange multiplier for the budget constraint. This can be rewritten as

∂u(x)
∂xi

pi

∣∣∣∣∣
x=x(p;m)

= λ(p;m), (3.6)

which has the interpretation that the marginal utility of spending a dollar on good i should
equal the marginal value of gaining a dollar of wealth, λ(p;m).5 Combining first-order condi-
tions for any two goods gives

∂u(x)
∂xi

pi

∣∣∣∣∣
x=x(p;m)

=

∂u(x)
∂xj

pj

∣∣∣∣∣
x=x(p;m)

, (3.7)

which means that the marginal value of spending a dollar on each good should be equal.
Finally, we can rewrite this to obtain a marginal rate of substitution formula,∣∣∣∣∣−

∂u(x)
∂xi

∂u(x)
∂xj

∣∣∣∣∣
∣∣∣∣∣
x=x(p;m)

=
pi
pj
. (3.8)

All of these are analogous to the first-order conditions in the firm’s problem.
For similar questions, see part (i) of all of the past exam questions.

3.3 Consumer’s Value and Policy Functions
In this section, we study how changes in prices and wealth affect the consumer’s value and
demand. As usual, we will do this by studying the consumer’s value and policy functions.
In the producer theory section, we found that the firm reacts to price rises in an input by

5Even though we constructed utility in an ordinal manner, it can be helpful to pretend it is cardinal as
long as the conclusions are still correct. In this case, if the utility function is rescaled, then the Lagrange
multiplier rescales with it. In other words, the “unit of measure”’ for measuring the marginal value of wealth
is determined by the choice of the utility function for representing the consumer’s preferences
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substituting away from that input (even if the production function is not concave!). We will
see that the situation is more complicated here.

So what happens to the consumer’s value after a wealth increase or a price rise in good i?
Clearly, the consumer likes the wealth increase, so that ∂

∂m
v(p,m) > 0 and his value goes down

after a price increase, so that ∂
∂pi

v(p,m) < 0. But what more can we say? As in production
theory, we can apply the envelope theorem,

∂v(p,m)

∂pi
= −λ(p,m)xi(p,m) (3.9)

∂v(p,m)

∂m
= λ(p,m). (3.10)

The second equation says that the Lagrange multiplier can be interpreted as the marginal
value of money to the consumer (measured in the units determined by the choice of the utility
function). Again, it’s worth emphasising that you should remember this in future, so that you
remember how to interpret Lagrange multipliers. The first equation says that the marginal
value of increasing prices is equivalent to losing wealth (that’s the Lagrange multiplier), where
the amount of wealth lost is the increase in expenditure due to the price increase.

We can use the first order conditions to solve for the consumer’s optimal policy in terms
of the value function.6

xi(p,m) = −
∂v(p,m)

∂pi
∂v(p,m)

∂m

. (3.11)

This is really just a simple reformulation of the envelope equations, but it emphasises the rela-
tionship between the derivative of the value function and the policy function. Unfortunately,
the formula for the consumer’s policy in (3.11) is much more complex than the analogous
formula from producer theory. It does not depend on the derivatives of v in a straightforward
way. Even if the value function were convex, that would not tell us that the policy would be
monotone.

In fact, we will see that the policy function (demand function) need not be monotonic.
This is in stark contrast to producer theory, where we established that a price rise leads the
firm to substitute away from that good. We define the following terminology:

• normal good: A good xi is normal at (p,m) if demand increases after a wealth increase,
i.e. ∂

∂m
xi(p,m) > 0.

• inferior good: A good xi is inferior at (p,m) if demand decreases after a wealth increase,
i.e. ∂

∂m
xi(p,m) < 0.

• Giffen good: A good xi is a Giffen good at (p,m) if demand increases after its price
increases, i.e. ∂

∂pi
xi(p,m) > 0.

6This formula is sometimes called Roy’s identity.
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As Mr. Giffen has pointed out, a rise in the price of bread makes so large
a drain on the resources of the poorer labouring families and raises so much
the marginal utility of money to them, that they are forced to curtail their
consumption of meat and the more expensive farinaceous foods: and, bread
being still the cheapest food which they can get and will take, they consume
more, and not less of it.

– Marshall (1890)

• substitutes:7 Goods xi and xj are substitutes at (p,m) if a price increase in one of the
goods leads to an increase in consumption of the other, i.e. ∂

∂pj
xi(p,m) > 0. (Note that

(i) if f : Rn → R is a smooth function, then ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

and (ii) the demand function
is related to the derivative of the indirect utility function via (3.11), so swapping the i
and the j above makes no difference.)

• complements: Goods xi and xj are complements at (p,m) if a price increase in one of
the goods leads to a decrease in consumption of the other, i.e. ∂

∂pj
xi(p,m) < 0.

The terminology above all applies to a particular vector of prices and wealth (p,m). For
example, it is possible for a good to be a normal good when the consumer has low wealth, and
for it to become an inferior good when the consumer gains sufficient wealth.

Question 3.5. ✓ Show that a good can not be an inferior good for all prices and wealth levels
(p,m). Hint: start from (p, 0).

We will simplify (3.11) by using the same dynamic programming techniques as before, which
will provide insight into whether goods are normal, inferior, etc.

For more similar questions, see the following practice exam questions: 2.iv, 10.iii, 11.iv,
14.iv, 17.iv, 19.iv.

3.4 Expenditure Function and Policy Functions
In the previous section, we derived a formula relating the first derivative of the consumer’s
value function with his policy function. The formula was complicated because of the income
and substitution effects. This section uses dynamic programming to break the consumer’s
problem into simpler pieces so that we can isolate the income and substitution effects.

We break the consumer’s problem into two pieces (1) how much utility can I afford, and (2)
what is the lowest cost way to achieve a target utility? We define the expenditure function,

7The definition here matches undergraduate textbooks, but is different from many graduate level texts.
The definition we provide is often referred to as “gross substitutes”, with the term “substitutes” reserved for
∂

∂pj
hi(p, ū) > 0, where the policy function h(p, ū) is defined in the next section.
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which mirrors the cost function from production theory, as

e(p, ū) = min
x∈RN

+

p · x = p · h(p, ū) (3.12)

s.t. u(x) ≥ ū, (3.13)

where h(p, ū) is the policy function (which is sometimes called the Hicksian demand func-
tion or compensated demand function). This leads to the following Bellman equation for
the consumer’s value function,

v(p,m) =max
ū

ū (3.14)

s.t. e(p, ū) = m. (3.15)

At first glance, this Bellman equation appears trivial. There is no trade-off involved – just find
the best affordable utility. So it is quite surprising that this is actually a useful simplification!
We will see that it is very useful, because it allows us to shut down the income effect by holding
wealth fixed.

Applying the constrained envelope theorem to the expenditure function gives

∂e(p, ū)

∂pi
= hi(p, ū) (3.16)

∂e(p, ū)

∂ū
= µ(p, ū), (3.17)

where µ(p, ū) is the Lagrange multiplier for the utility constraint (3.13), and should be in-
terpreted as the marginal cost of utility. The first equation (3.16) says that the marginal
expenditure of a price increase in good i is just the quantity of good i that the consumer
wishes to buy. This gives a much simplified relationship between the value function and the
policy function compared to (3.11).8

Since expenditure p·x is linear in prices, Theorem 2.2 implies that the expenditure function
e is concave in prices. This is depicted in Figure 3.1. Thus, we may deduce

∂hi(p, ū)

∂pi
=

∂2e(p, ū)

∂p2i
< 0, (3.18)

which means that after a price increase of good i, the cheapest way to maintain the same
utility u involves substituting away from good i. By holding utility fixed, we have isolated the
substitution effect from the income effect.
Example 3.1. A travel agency puts together luxury holiday package deals, consisting of hotel
accommodation and tours. It promises customers a utility of u∗∗ (“the time of your life”).

8(3.16) is sometimes called Shephard’s lemma.
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p1

e(·, p2, . . . , pN , ū)

Figure 3.1: The expenditure function is con-
cave in prices.

Show that if the price of hotel accommodation rises, then the package deal that minimises
expenditure involves less accommodation.

Answer. Let (pa, pt) be the prices of accommodation and tours, respectively, and (a, t)
the quantities. We would like to show that the compensated demand for accommodation,
ha(pa, pt; u∗∗) decreases when pa increases. As established in (3.16), the envelope theorem
relates the expenditure function and the compensated demand function:

∂e(pa, pt, u∗∗)

∂pa
= ha(pa, pt, u∗∗). (3.19)

The expenditure function is the lower envelope of concave functions, and is therefore concave
by Theorem 2.2 (see Figure 3.1). Thus, both sides of the equation are decreasing in pa.

Question 3.6. ✓ Suppose that the government would like to decrease the carbon footprint of
air travel between London and Edinburgh, but without affecting the welfare of travellers.

(i) Write down an expenditure function (i.e. value function in terms of utility and prices)
for the traveller. Please account for all other goods (perhaps represented by a vector
x), i.e. travellers also eat, work, rent accommodation, etc.; please account for all other
goods such as these.

(ii) Show that a price increase on air travel (caused by a tax) along with appropriate lump-
sum compensation to preserve the utility of travellers would decrease demand for air
travel. (Hint: study the demand function h(p, ū), and use the envelope theorem and
concavity of the expenditure function.)

(iii) Show that if air travellers are taxed, then compensation would be required to preserve
their welfare. Write down a formula for the compensation required. (Hint: use the
expenditure function.)
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3.5 Slutsky Decomposition
In the previous section, we constructed a demand function h(p, ū) that only has a substitution
effect present. The income effect was shut down by holding utility fixed. In this section, we
decompose the usual demand function x(p,m) into income and substitution effects by deriving
a formula relating the two demand functions.

The compensated demand function h(p, ū) is written in terms of utility, whereas the usual
demand function x(p,m) is written in terms of money. Money and utility are related by the
expenditure function m = e(p, ū), so we can relate the two demand functions with:

h(p, ū) = x(p, e(p, ū)). (3.20)

The Slutsky equation relates the derivatives of these two policy functions, and thus decom-
poses the net effect of price changes into income and substitution effects.
Theorem 3.3 (Slustky equation). If the consumer’s utility function is smooth and the policy
functions x(p,m) and h(p, ū) are differentiable then

∂xi(p,m)

∂pj︸ ︷︷ ︸
net effect

=

[
∂hi(p, ū)

∂pj

]
ū=v(p,m)︸ ︷︷ ︸

substitution effect

+−xj(p,m)︸ ︷︷ ︸
wealth lost

∂xi(p,m)

∂m︸ ︷︷ ︸
income effect

. (3.21)

Proof. Focusing attention on good i, (3.20) becomes

hi(p, ū) = xi(p, e(p, ū)). (3.22)

Differentiating both sides with respect to price pj gives

∂hi(p, ū)

∂pj
=

[
∂xi(p,m)

∂pj
+

∂xi(p,m)

∂m

∂e(p, ū)

∂pj

]
m=e(p,ū)

. (3.23)

Using the envelope theorem, we found a formula (3.16) for the derivatives of the value function.
Substituting this in gives

∂hi(p, ū)

∂pj
=

[
∂xi(p,m)

∂pj
+

∂xi(p,m)

∂m
hj(p, ū)

]
m=e(p,ū)

. (3.24)

This equation is true for every combination of (m, ū) that satifies m = e(p, ū), or equivalently,
ū = v(p,m). So we can rewrite this equation as[

∂hi(p, ū)

∂pj

]
ū=v(p,m)

=
∂xi(p,m)

∂pj
+

∂xi(p,m)

∂m
hj(p, v(p,m))). (3.25)

Since hj(p, v(p,m)) = xj(p,m), substituting and rearranging gives the Slutsky equation.
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It is important to remember that the substitution effect of a price rise in a different good
can be negative! Specifically, in the familiar two-good case in undergraduate economics, the
substitution effect of a price rise in a different good is always positive. When there are many
goods, this is no longer true. Consider the following counter-example with three goods. Sup-
pose that rice and beans are complements, and burgers are substitutes of both rice and beans.
If the price of rice increases, then the compensated demand function maintains the same level
of utility by substituting away from rice and beans, and toward burgers. This means that the
price rise of rice has a negative substitution effect on beans.
Question 3.7. ✓ Show that Giffen goods are inferior. (Hint: use the tools above to replicate
the intuition from undergraduate economics. Namely, the substitution effect of a price increase
of a good is always negative, and the net effect for a Giffen good is positive, so the income
effect must be positive.)
Question 3.8. ✓ The World Food Program would like to increase the food consumption of
impoverished families.

(i) One proposal is give the families money. Will it work?

(ii) Another proposal is to decrease the price of food the families face through subsidies.
Will it work?

(iii) If both proposals involve the same budget, which one would the families prefer?

For more similar questions, see the following practice exam questions: 5.vii, 15.v, 30.iii.

3.6 *Continuity of Demand
The proof in this section builds on the topology concepts from Appendix C.
Theorem 3.4. If the utility function u : Rn

+ → R is continuous and strictly quasi-concave, then
the demand function x : RN

++ × R++ → Rn is well-defined and continuous.

Proof. x(p,m) is well-defined, i.e. exists and is unique. First, for each price and wealth
level, (p,m) ∈ RN

++ × R++, the budget set B(p,m) =
{
x ∈ RN

+ : p · x ≤ m
}
is non-empty and

compact. Therefore, the Extreme Value Theorem (Theorem C.20) implies that there is an
optimal choice x(p,m).

Second, the optimal choice at (p,m) is unique. If x′ and x′′ were both optimal, then strict
quasi-concavity of u would imply that 1

2
x′+ 1

2
x′′ is strictly better. Thus, x(p,m) is unique and

hence well-defined.
x is continuous. To establish that x is continuous, pick any convergent sequence (pn,mn) →

(p∗,m∗) and let xn = x(pn,mn). We need to show that xn → x(p∗,m∗).
For sufficiently low prices and high wealth (p̄, m̄), the sequence xn lies in the budget set

B(p̄, m̄), which is compact. Therefore, it suffices to show that every convergent subsequence
yn converges to x(p∗,m∗).
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Let y∗ = limn→∞ yn. Clearly y∗ ∈ B(p∗,m∗). Now suppose for the sake of contradiction
that y∗ 6= x(p∗,m∗). Since the optimal choice x(p∗,m∗) is unique,

u(yn) → u(y∗) < u(x(p∗,m∗)).

Now let an = mn/(pn · x(p∗,m∗)), and let zn = anx(p
∗,m∗). By construction, zn ∈ B(pn,mn)

and
u(yn) ≥ u(zn) → u(x(p∗,m∗)),

a contradiction. We conclude that y∗ = x(p∗,m∗), as required.



Chapter 4

Time

A major part of human activity – including what you are doing right now – is about preparing
for the future. Decisions about education, health-care, construction, research, and pensions
all relate to the future. But in the future, we also anticipate making decisions. How should we
model making decisions at different times? How should we model preparing for the future?

The chapter begins in Section 4.1 by exploring which utility functions can represent pref-
erences for consumption at different times. These utility functions take the point of view a
decision maker at a single point of time planning the future. However, this is complicated,
because a complete plan for the future is very big. In real life, we sort out the minutiae one day
at a time, and only make rough plans for the future. Section 4.2 shows how to use dynamic
programming to do the same thing mathematically.

Society never stops preparing for the future, and if it did, our institutions would be com-
pletely different. For instance, if time ended, then would there be a big party at the end?
If so, who would volunteer to be the bartender, and who would trust them to do their job
properly? If you were to pay the bartender, when would he have a chance to spend his wages?
These questions are often a big distraction from the main issue at hand, so we often get clearer
insights by studying models in which time never ends. In other words, we study models in
which time is infinite. Section 4.3 provides a theory of dynamic programming when time never
ends.

4.1 Time Preference
This section continues from the previous section to explore preferences over time. For example,
a consumer might live for several time periods t ∈ {1, . . . , T}, and face a choice of how much
to consume ct and work lt in each period. Several important questions arise when studying
preference over time. Does a consumer’s past choices affect their preferences over future choices,
as in the case of an addictive drug? Can we use dynamic programming to focus on choices
made one day at a time? Is the consumer impatient, i.e. does the consumer prefer to forego

53
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some consumption tomorrow in order to have higher consumption today?
To a first-order approximation, people’s experiences of past consumption do not affect their

preferences over future consumption. While we often learn based on our experiences, these
do not change our preferences in an obvious way. For example, knowing where to find good
risotto in Edinburgh probably does not change our appetite for good risotto. Thus, our past
experience with risotto does not affect our future preferences over risotto. On the other hand,
after watching the first half of a movie, we get hooked and want to know how the movie ends.

To capture the idea that choices in other time periods do not affect preferences today, we
need to develop some notation. Suppose that there are N goods and T time periods. Thus,
the consumer must make N × T choices; they must make a choice from X = RN

+ every time
period. Let J be any subset of the time periods {1, . . . , T}, and let −J denote the other time
periods not contained in J , i.e. {t ∈ T : t 6∈ J}. If x ∈ XT is a T -period choice vector, then
xJ is the corresponding |J |-period choice vector, e.g. if x = (1, 2, 3), then x{2,3} = (2, 3). The
main reason for this notation is to replace one piece of a vector with another. For example,
(xJ , y−J) replaces the −J portion of x with y, e.g. if x = (1, 2, 3) and y = (4, 5, 6) and J = {2}
then (xJ , y−J) = (4, 2, 6). This notation allows us to define time-separable preferences.
Definition 4.1 (Time separable). Consider a time-indexed product choice space with T time
periods and N goods, XT where X = RN

+ . A preference relation ≿ is time-separable if for
any pair of choices x, y ∈ XT that coincide in time periods J (i.e. xJ = yJ), the preference is
unaffected by simultaneously changing the choices in the J time periods (i.e. if x ≿ y and we
choose any z ∈ XT , then (x−J , zJ) ≿ (y−J , zJ)).
Example 4.1. Suppose there is one good (N = 1), methamphetamine, and that it is possible
to consume either zero or one hits per day over four days (T = 4). There are thus 24 = 16
different possible consumption plans, including

x = 0000 (4.1)
y = 0011 (4.2)
x′ = 0100 (4.3)
y′ = 0111. (4.4)

Most people prefer to avoid addictive drugs like methamphetamine. Therefore, most people
prefer x ≿ y. However, after consuming a hit of methamphetamine, most people become
addicted, and strongly prefer to avoid withdrawal symptoms of stopping consumption, i.e.
going “cold turkey”. Therefore, most people prefer y′ ≿ x′. Are these preferences time-
separable?

Answer. No, these preferences are not time-separable. We will show the preference reversal
when changing (x, y) into (x′, y′) violate time-separability. Set J = {1, 2} and z = y′. This
means the new plans can be written in terms of the old plans as x′ = (x−J , zJ) and y′ =
(y−J , zJ). Therefore, the definition of time-separability requires that x′ ≿ y′ if x ≿ y, which is
not the case.
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The following theorem establishes that if preferences are time-separable, then they can be
represented by an additively-separable utility function.
Theorem 4.1 (*). If the preferences ≿ over choices in XT are complete, reflexive, transitive,
continuous, time-separable, and strictly increasing, and T ≥ 3, then there exists continuous
utility functions u1, . . . , uT such that ≿ is represented by

U(x) = u1(x1) + u2(x2) + · · ·+ uT (xT ). (4.5)

Proof. Debreu (1960) proves a more general result.

4.2 Finite-Horizon Dynamic Programming
Section 2.4 applied dynamic programming to split the firm’s problem up into output and input
choices. Time-separable preferences allow us to study one day at a time, and so they are well-
suited to dynamic programming. For example, suppose a person has a cake of size k1 that can
be stored for T days. She consumes xt each day, which gives her utility

U(x) = u1(x1) + · · ·+ uT (xT ).

Note that these preferences accommodate some days being special (such as birthdays), and
also discounted utility

U(x) = u(x1) + βu(x2) + · · ·+ βT−1u(xT )

where high values of the discount factor β correspond to more patience and u is called the
flow utility function. The value to her of a cake of size kt at the start of day t is

Vt(kt) = max
xt,··· ,xT≥0

ut(xt) + · · ·+ uT (xT )

s.t. xt + · · ·+ xT = kt.

This is a complicated problem, because it involves T choices. It is simpler to focus on each
day’s choice separately using a Bellman equation,

Vt(kt) =


max

xt,kt+1≥0
ut(xt) + Vt+1(kt+1)

s.t. xt + kt+1 = kt
if t < T ,

uT (kT ) if t = T .
(4.6)

In this Bellman equation, the history of when the cake was eaten is irrelevant; all that matters
at the start of day t is how much cake is left, kt. Having the fewest and simplest possible
state-variable(s) leads to a simpler optimisation problem. But it is important to check that
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the Bellman equation has enough state variables, i.e. to prove the Principle of Optimality (like
we did in Lemma 2.1):

Vt(kt) = max
xt,··· ,xT≥0

ut(xt) + · · ·+ uT (xT )

s.t. xt + · · ·+ xT = kt

= max
xt,··· ,xT ,kt+1≥0

ut(xt) + · · ·+ uT (xT )

s.t. xt + · · ·+ xT = kt and xt + kt+1 = kt

= max
xt,kt+1≥0

s.t. xt + kt+1 = kt

[ max
xt+1,··· ,xT≥0

ut(xt) + · · ·+ uT (xT )

s.t. xt + · · ·+ xT = kt

]
= max

xt,kt+1≥0
ut(xt)

s.t. xt + kt+1 = kt
+

[ max
xt+1,··· ,xT≥0

ut+1(xt+1) + · · ·+ uT (xT )

s.t. xt + · · ·+ xT = kt

]
= max

xt,kt+1≥0
ut(xt)

s.t. xt + kt+1 = kt
+

[ max
xt+1,··· ,xT≥0

ut+1(xt+1) + · · ·+ uT (xT )

s.t. xt+1 + · · ·+ xT = kt+1

]
= max

xt,kt+1≥0
ut(xt) + Vt+1(kt+1)

s.t. xt + kt+1 = kt.

Question 4.1. ✓ Consider the consumer’s cake-eating problem when T = 5, u1(x) = · · · =
u4(x) = logx, and u5(x) = 2 logx.

(i) Calculate x5(k5) and V5(k5).

(ii) Calculate x4(k4) and V4(k4). (Hint: use the answer from the previous part.)

(iii) Calculate x1(k1) and V1(k1).

(iv) If the cake starts out at size k = 1, how much is eaten each day?

Question 4.2. ✓ Consider the cake-eating problem with any utility function u(x), any discount
rate β < 1 (so that the consumer is impatient), and any initial cake sized k1.

(i) Write down the consumer’s Bellman equation, using the amount of cake left kt at the
start of time t as a state variable.

(ii) Write down the first-order condition from the Bellman equation.

(iii) Use the envelope theorem to establish that V ′
t (kt) = u′(xt(kt)), where xt(kt) is the cake-

eating policy at time period t.
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(iv) Hence, derive the Euler equation,

u′(xt(kt)) = βu′(xt+1(kt+1)), (4.7)

that says that optimal choices involve the same marginal utility at every time period
after accounting for discounting.

(v) What assumption(s) do you need to make on the utility function u to establish that the
consumer eats less as time progresses?

Question 4.3. ✓ Suppose that eating cake is addictive in the following way: after consuming
xt−1 cake yesterday, the utility from consuming xt cake today is only u(xt − 1

2
xt−1). Thus, the

consumer’s preferences are

U(x) = u(x1) + βu

(
x2 −

1

2
x1

)
+ · · ·+ βT−1u

(
xT − 1

2
xT−1

)
, (4.8)

where u(x) = log(x+ 1).

(i) Show that the preferences represented by U are not time-separable. (Hint: you just have
to find one combination of choices that forms a counterexample.)

(ii) Write down a Bellman equation for the consumer.

(iii) For simplicity, focus on the two time period case only. Find a specific β for which the
consumer prefers to consume all of the cake in the last period (to avoid addiction).

For more similar questions, see the following practice exam questions: 5.v, 11.iii, 13.iv, 13.v,
14.ii, 14.iii, 17.iii, 19.ii, 19.iii, 28.iii, 30.ii.

4.3 * Infinite Horizon Dynamic Programming
The previous section applied dynamic programming to simplifying inter-temporal optimisation
problems with a finite number of time periods. Then Section 4.2 In this section, we extend
the technique to problems with infinite time periods. This is important because families
(dynasties) and societies never end, and never stop preparing for the future. It also turns out
that unending problems are often easier to solve, because each day is like the next one; it is
not necessary to keep track of the time.

Economics research papers often skips over the details of how they apply these techniques,
because they are an integral part of macroeconomics education. (Or alternatively, they are
apply the techniques in an innovative way which might be difficult to read.) The textbook by
Stokey and Lucas (1989, Chapter 5) give 17 applications of these techniques to economics. The
textbook by Ljungqvist and Sargent (2012) also applies these techniques throughout. Some
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papers do carefully explain how they apply the techniques; see for example Lucas and Stokey
(1987).

Consider the following infinite horizon version of the cake-eating problem from Section 4.1.
When the cake-consumer has k units of cake in time t, his forward-looking discounted utility
is

Vt(k) = sup
{xs}∞s=t

∞∑
s=t

βs−tu(xs) (4.9)

s.t.
∞∑
s=t

xs = k. (4.10)

The corresponding Bellman equation is

Vt(k) = sup
xt≥0,kt+1≥0

u(xt) + βVt+1(kt+1) (4.11)

s.t. xt + kt+1 = k. (4.12)

In fact, the right side of (4.9) does not depend on t in any important way. For example,
regardless of what t is, the first term in the sum is multiplied by β0, and so on. So V1 = V2 =
V3 = · · · . We will call this common value function V , i.e. V = V1 = V2 = · · · .

This means the Bellman equation simplifies (drastically!) to

V (k) = sup
x,k′≥0

u(x) + βV (k′) (4.13)

s.t. x+ k′ = k. (4.14)

Note that unlike the previous Bellman equations, the same value function V appears on both
sides.1 A Bellman equation that has the same value function on both sides are called a
recursive Bellman equation.

Now, proving the principle of optimality is straightforward here:

Theorem 4.2 (Principle of optimality for the cake-eating problem). The value function in (4.9)
is a solution to the Bellman equation (4.13).

1Actually, this is not entirely true. If we include time t as a state variable, then the same value function
V (t, k) as a function of t and k would appear on both sides of the Bellman equation.
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Proof.

V (k) = sup
{xs}∞s=0

∞∑
s=0

βsu(xs) s.t.
∞∑
s=0

xs = k (4.15)

= sup
x0,k1,{xs}∞s=1

∞∑
s=0

βsu(xs) s.t.
∞∑
s=1

xs = k1 and x0 + k1 = k (4.16)

= sup
x0,k1

s.t. x0 + k1 = k


sup

{xs}∞s=1

∞∑
s=0

βsu(xs)

s.t.
∞∑
s=1

xs = k1

 (4.17)

= sup
x0,k1

s.t. x0 + k1 = k


u(x0)+ sup

{xs}∞s=1

∞∑
s=1

βsu(xs)

s.t.
∞∑
s=1

xs = k1

 (4.18)

= sup
x0,k1

u(x0) + βV1(k1) s.t. x0 + k1 = k (4.19)

= sup
x,k′

u(x) + βV (k′) s.t. x+ k′ = k. (4.20)

However, there are still a few remaining questions. Are there other (wrong) solutions to the
Bellman equation? Is it possible to use the Bellman equation to prove that the value function
is increasing, concave, differentiable, etc.? How can a computer programme calculate the value
function? All three types of questions can often be answered by applying Banach’s fixed point
theorem (Theorem C.16).

But before answering these questions, we show how to apply Banach’s fixed point theorem.
The key step is to rewrite the Bellman equation (4.13) as a function, called the Bellman
operator,

F (V̂ )(k) = sup
x,k′≥0

u(x) + βV̂ (k′) (4.21)

s.t. x+ k′ = k, (4.22)

and to prove that this Bellman operator is a contraction. Note that a function V is a fixed
point of the Bellman operator if and only if V is a solution to the Bellman equation. Also
note that if we put V̂ = 0, then F (V̂ ) is the value in a one-period cake-eating problem, and
F (F (V̂ )) for the two-period problem, etc.
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Lemma 4.1 (Blackwell’s Lemma). Suppose u is a bounded utility function. Then the Bellman
operator is a contraction of degree β on (B(R+), d∞).

Proof. Fix any V ∈ B(R+). We first show that F (V ) exists and is bounded, i.e. F (V ) ∈
B(R+). Since u and V are bounded, there exists some open balls Nr(0) and Ns(0) the contain
the ranges of u and V , respectively. Therefore, every combination of (x, k′) involves the
objective lying within Nr+βs(0). We conclude that the supremum exists (i.e. is finite), so that
F (V ) exists and is bounded.

Second, we show that it is a contraction. Consider two value functions V and W . Then,

F (V )(k) = sup
x∈[0,k]

u(x) + βV (k − x)

= sup
x∈[0,k]

u(x) + βW (k − x)− βW (k − x) + βV (k − x)

= sup
x1,x2∈[0,k]

u(x1) + βW (k − x1)− βW (k − x2) + βV (k − x2)

s.t. x1 = x2

≤ sup
x1,x2∈[0,k]

u(x1) + βW (k − x1)− βW (k − x2) + βV (k − x2)

=

[
sup

x∈[0,k]
u(x) + βW (k − x)

]
+

[
sup

x∈[0,k]
−βW (k − x) + βV (k − x)

]

= F (W )(k) + β

[
sup

k′∈[0,k]
−W (k′) + V (k′)

]

≤ F (W )(k) + β

[
sup
k′∈R+

| −W (k′) + V (k′)|

]
= F (W )(k) + βd∞(V,W ).

Therefore,

F (V )(k)− F (W )(k) ≤ βd∞(V,W ) for all k.

Swapping the role of V and W , and repeating these calculations gives

F (W )(k)− F (V )(k) ≤ βd∞(V,W ) for all k.

Therefore,

|F (W )(k)− F (V )(k)| ≤ βd∞(V,W ) for all k.

Taking the supremum over all k, we conclude that d∞(F (V ), F (W )) ≤ βd∞(V,W ), so F is a
contraction of degree β.
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Lemma 4.2. Suppose u is a continuous and bounded utility function. Then the Bellman
operator is a contraction of degree β on (CB(R+), d∞).

Proof. We already established that F is a contraction on (B(R+), d∞). It remains to show
that if V ′ ∈ B(R+) is continuous, then F (V ′) is also continuous.

The rest of the proof is an application of Berge’s Theorem of the Maximum, which we
skipped.

We now apply Banach’s fixed point theorem to answer the questions above.
First, there are no wrong (bounded) solutions to the Bellman equation, because Banach’s

fixed point theorem establishes that there is only one solution.
Second, it is possible to prove that the Bellman operator is a self-map on the weakly

increasing continuous and bounded functions. Since these functions form a complete metric
space, Banach’s fixed point theorem implies that the solution must lie in this space, i.e. the
value function must be weakly increasing. The same argument applies to any set of functions,
as long as it is a complete set and the Bellman operator is a self-map on that set.

Third, Banach’s fixed point theorem gives an algorithm for finding fixed points. Specifically,
(1) starting with any value function, and (2) repeatedly applying the Bellman operator.
Question 4.4. ✓ Prove that in the cake-eating problem, the value function V is weakly
increasing. Hint: first assume that the supremum is attained as a maximum, and then amend
your proof to accommodate suprema.
Question 4.5. ✓ Prove that in the cake-eating problem, if the utility function u is weakly
concave, then the value function V is weakly concave.
Question 4.6. ✓ Based on the previous two questions, prove that if the utility function u is
strictly increasing and strictly concave, then the value function V is strictly increasing and
strictly concave.
Question 4.7. ✓ Suppose that the cake grows by 1% every day. Write down a new recursive
Bellman equation, and prove that the value function is weakly increasing in the cake size.
Question 4.8. ✓ Suppose f : X → X is a contraction on the metric space (X, d), and that f
is a self-map on A, i.e. f(A) ⊆ A. Find a counter-example to the following false claim: f has
a fixed point x∗ ∈ A.
For more similar questions, see the following practice exam questions: 21.b.v, 24.b.viii, 27.b.vii,
29.b.viii, 30.b.vii, 31.b.viii.
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Chapter 5

Equilibrium

This chapter brings together supply, demand, production and consumption to study all markets
at once. This is crucial for several reasons. First, policy intervention in one market can have
unintended consequences in other markets. Second, many important markets – especially
capital markets – can only be understood by studying incentives and trade over time; they are
fundamentally multi-market markets. Third, the nature of the invisible hand (despite the
many caveats) is only truly impressive when we appreciate its effectiveness across all markets
at once.

The chapter begins with Section 5.1, which defines the economic environment without
defining market institutions. Section 5.2 asks which ways of allocating resources in an economic
environment are desirable. Section 5.3 defines perfectly competitive market institutions, i.e.
the price mechanism. Section 5.4 introduces some tools for identifying and characterising
equilibria. Section 5.5 verifies the logic of the invisible hand allocating resources efficiently.
Section 5.6 establishes that economies have equilibria is a necessary condition for an economy
ending up in an equilibrium. Section 5.7 shows that an appropriate tax policy can be chosen
to steer the market towards any desired efficient allocation.

5.1 Economies
The first step in defining a mathematical economy is defining the environment, which is an
informal term that refers to the possible ways of allocating resources in the society, and the
individuals’ preferences over different allocations. We first introduce a simple pure-exchange
economy in which the resources available are only determined by the households’ endowments.
We also describe a production economy in which firms supply goods and services. We argue
that embellishing the model with firms is often helpful in applications, but does not expand
the scope of the theory of pure-exchange economies in any important way. Therefore, for the
sake of simplicity, we only provide theorems for pure-exchange economies in the rest of this
chapter.

63
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In this chapter, we refer to consumers as households so that we can use the notation h to
identify a particular household, and H to denote the set of all households.
Definition 5.1 (Pure Exchange Economy). A pure exchange economy with N goods and
household set H consists of:

• a utility function uh : RN
+ → R for each household h ∈ H, and

• an endowment eh ∈ RN
+ for each household h ∈ H.

The allocation of resources to households, {xh} is feasible if∑
h∈H

xh =
∑
h∈H

eh.

We will also study a more general environment with firms that engage in production. At first
sight, this seems like a major generalisation compared to an pure-exchange economy. However,
with minor changes to the pure-exchange economy, we may accommodate households engaging
in home production. For example, consider household that is capable of transforming m
units of milk into f(m) units of yoghurt, illustrated in Figure 5.1. Suppose the household has
no endowment, buys m units of milk on the market at price pm, which it finances by selling −y
units of yoghurt at price py. (Negative quantities mean the household is selling, rather than
buying the good.) The household consumes whatever milk M it does not use for production,
and whatever yoghurt Y it does not sell. An outside observer who didn’t see any activity
inside the house would only see quantities of milk m and yoghurt y entering and leaving the
house. It would be as if the household had a utility function over traded items (m, y) rather
than consumed items (M,Y ):

observer’s utility︷ ︸︸ ︷
u(m, y) =max

M,Y

“actual” utility︷ ︸︸ ︷
U(M,Y ) (5.1)

s.t. Y︸︷︷︸
yoghurt consumed

= f(m−M)︸ ︷︷ ︸
yoghurt produced

+ y︸︷︷︸
yoghurt bought.

(5.2)

In some sense, all utility functions are like this. Milk bought at a supermarket is rarely
consumed directly – it is combined with breakfast cereal, or cocoa powder to make a hot
chocolate, or flour to make pancakes, etc.

This modelling choice of home production rather than firm production is actually quite
common in economics research. For example, Diamond (1982) influential (Nobel prize of
2010 winning?) paper “Aggregate Demand Management in Search Equilibrium”, colloquially
referred to as “the coconuts model,” uses the home production approach. So, given that
utility functions already accommodate production, what is the advantage of making a more
complicated model with firms?
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U(M,Y )

©

f

m y < 0

m−M f(m−M)
M Y

Figure 5.1: Home production

The answer is that firms are much simpler than households because firms have a clear
objective: maximising profits. We saw that if a factor price increases, then firms purchase
less of that factor. The same can not be said of households. By separating simple production
decisions from complex consumption decisions, we can learn more. In other words, we make
the model more complicated, because it actually makes some decisions simpler to study!

Adding firms to the pure-exchange economy is relatively straight forward. However, it
raises one question: where do the profits go? Our (crude) approach is to endow households
with shares in firms, and profits are paid to the shareholders. Another approach is to also
include a stock market in which shares are traded. Yet another approach is to have endogenous
entry of firms to ensure that all firms make no profits to distribute.
Definition 5.2 (* Production Economy). A production economy with N goods, household
set H and firm set I consists of

• a utility function uh : RN
+ → R for each household h ∈ H,

• endowments eh ∈ RN
+ , for each household h ∈ H,

• a production technology set Yi ⊆ RN for each firm i ∈ I, and

• firm ownership given by Sh,i ∈ [0, 1], where Sh,i indicates that household h owns a share
Sh,i of firm i, and the total number of shares for each firm is 1, i.e.∑

h∈H

Sh,i = 1 for all i ∈ I.

The allocation of resources to households, ({xh} , {yi}) is feasible if∑
h∈H

xh =
∑
h∈H

eh +
∑
i∈I

yi.

5.2 Efficient Allocations
Before we study institutions such as markets and prices, we can think about which allocations
of resources are socially desirable (as opposed to individually desirable). We will introduce
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the notions of Pareto dominance, Pareto efficiency, the Pareto frontier, and social welfare
functions. Methodologically speaking, because we wish to compare the effectiveness of different
institutions, it is important to define normative concepts that apply to all possible institutions.
For example, if we defined “efficiency” in terms of market prices, then we would be unable to
compare the efficacy of markets versus a centrally planned economy in which prices are absent.

However, we have already broken our own rule! In particular, we have already included
ownership in the pure-exchange model by allocating endowment ownership to households, and
again in the production model by allocating firm ownership to households. By assuming that
the institution of property rights are present, we have precluded studying whether property
rights are desirable. This is not a serious deficiency because we are still able to study a social
planner’s problem in which the social planner is able to confiscate property.

When comparing institutions, we are primarily concerned about how the institutions affect
the welfare of households rather than other properties of allocations such as quantities. The
utility possibility set is the set of all feasible utilities for each household.
Definition 5.3 (Utility possibility set). The utility possibility set of an economy is the set
of vectors of utilities of households for all feasible allocations. For example, in the context of
a pure-exchange economy with utility functions {uh}h∈H and endowments {eh}h∈H , this is

U =
{
{uh(xh)}h∈H : x is a feasible allocation

}
(5.3)

=

{
{uh(xh)}h∈H : xh ∈ RN

+ for all h ∈ H and
∑
h∈H

xh =
∑
h∈H

eh

}
. (5.4)

Note that it is sometimes helpful to allow free disposal of goods, i.e. to rewrite the resource
constraint as ∑

h∈H

xhn ≤
∑
h∈H

ehn for all n. (5.5)

Pareto frontier U∗

possibility set U

u1

u2

Figure 5.2: Pareto frontier with free disposal

u1

u2

Figure 5.3: A Negishi social planner’s indif-
ference curves

The simplest way to rank allocations is by Pareto dominance.
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Definition 5.4. A vector of utilities u ∈ RH Pareto dominates another vector of utilities u′ ∈ RH

if u > u′, i.e.

(i) no household is worse off, i.e. uh ≥ u′
h for all h ∈ H, and

(ii) there is at least one household that is strictly better off, i.e. uh > u′
h for some h ∈ H.

If an allocation is Pareto dominated by some other feasible allocation, then in some sense
it is socially undesirable, and we label it inefficient. If the allocation passes the minimal
requirement of not being inefficient, then we say it is efficient.
Definition 5.5 (Pareto efficient). Given a utility possibility set U , a utility vector u is efficient
if it is feasible (u ∈ U) and there is no other feasible allocation u′ ∈ U that Pareto dominates
it.
The set of Pareto efficient utilities is called the Pareto frontier, one of which is depicted in
Figure 5.2.
Definition 5.6 (Pareto frontier). The Pareto frontier of a utility possibility set U is the set
of utility vectors that are Pareto efficient, and is denoted U∗.
The Pareto frontier could be quite large, so a more stringent approach to evaluating allocations
is with social welfare functions. However, there are many possible social welfare functions, and
there is no obvious criterion for selecting the best one.
Definition 5.7 (Social Welfare Function). A social welfare function is any function W :
RH → R, where H is the number of households.
It is common to study linear social welfare functions. These are sometimes called Negishi (1960)
social welfare functions, and the coefficients are called Negishi weights. The indifference
curves of a Negishi social planner are illustrated in Figure 5.3. Another widely used class of
social welfare functions was developed by Atkinson (1970) to capture inequality aversion. See
Jones and Klenow (2016) for an attempt to measure the social welfare of 13 countries.

The following (trivial) theorem establishes that if an allocation maximises a (reasonable)
social welfare function, then the allocation is Pareto efficient. This means that while social
welfare functions are more discriminating than Pareto efficiency, the two concepts never dis-
agree with each other. Maximising a social welfare function is sometimes called “solving the
social planner’s problem.”
Theorem 5.1. Let U ⊆ RH be a utility possibility set, and W : RH → R be a social welfare
function. If a utility vector u ∈ U maximises social welfare, i.e.

u ∈ argmax
û∈U

W (û), (5.6)

and W is strictly increasing, then u is Pareto efficient, i.e. u ∈ U∗.

Proof. If û ∈ U Pareto dominates u and W is strictly increasing, then W (û) > W (u). But u
maximises W , so there is no such û ∈ U .
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Question 5.1. ✓ Show that in any pure-exchange economy in which households have increasing
and concave utility functions, and there is free disposal of goods, then the utility possibility
set is convex.

5.3 Equilibrium
This section defines perfectly competitive market institutions based on prices. We provide
definitions for pure-exchange economies and production economies. In a pure-exchange equi-
librium, each household faces the utility maximisation problem from Section 3.2. Since we
want to account for all markets, we take the endowment version of the problem – we do not
have wealth or money in the model. The households’ decisions are interlinked in two respects:
they all face the same prices, and the market must clear so that supply equals demand. In
a production economy, each household may also be endowed with shares in firms. Thus, the
households’ budget constraints also include dividends paid out from the firms’ profits. In ad-
dition to households’ utility maximisation problem, each firm solves the profit maximisation
problem from Section 2.2.

Definition 5.8 (Pure-Exchange Equilibrium). Consider a pure-exchange economy with utility
functions {uh} and endowments {eh}. We say that the tuple (x∗, p∗) consisting of an allocation
x∗ and price vector p∗ is a pure-exchange equilibrium if each household h ∈ H makes an optimal
consumption choice,

x∗
h ∈ argmax

xh∈RN
+

uh(xh) (5.7)

s.t. p∗ · xh ≤ p∗ · eh, (5.8)

and all markets clear, ∑
h

x∗
h =

∑
h

eh. (5.9)

Note that for simplicity, we write the budget constraint as an equality. If the utility function is
strictly increasing, then we could equivalently write it as an inequality (expenditure less than
income), because consumers would always choose to buy as much as possible.

The definition of equilibrium for production economies is analogous.

Definition 5.9 (* General Equilibrium). Consider a production economy with utility functions
{uh}, endowments {eh}, production technology sets {Yi} and firm ownership Sh,i. We say
that the tuple (x∗, y∗, p∗) consisting of an allocation (x∗, y∗) and price vector p∗ is a general
equilibrium if
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(i) each household h ∈ H makes an optimal consumption choice,

x∗
h ∈ argmax

xh∈RN
+

uh(xh) (5.10)

s.t. p∗ · xh ≤ p∗ · eh +
∑
i∈I

Sh,iπ
∗
i , (5.11)

where π∗
i = p∗ · y∗i is the profit of firm i,

(ii) each firm i ∈ I makes optimal production choice (that maximises profits),

y∗i ∈ argmax
yi∈Yi

p∗ · yi, (5.12)

(iii) and all markets clear, ∑
h∈H

x∗
h =

∑
h∈H

eh +
∑
i∈I

y∗i . (5.13)

Note that firm i’s profit, p∗ · yi includes both revenue and costs, as yi is a vector with both
positive and negative entries that represent outputs and inputs, respectively. (See Section 2.6.)

Part (i) of all of the practice exam questions involve formulating a general equilibrium
model.

5.4 Characterising Equilibria
This section introduces Walras’ law, which is an essential tool for finding equilibria. It then
proceeds to illustrate equilibrium characterisation through examples.

The excess demand function measures how far away prices are from clearing the market.
It is straightforward to show that (x(p∗), p∗) is an equilibrium if and only if there is no excess
demand, i.e. z(p∗) = 0.1

Definition 5.10 (Excess demand function). The excess demand function of a pure-exchange
economy is

z(p) =
∑
h∈H

(xh(p)− eh), (5.14)

where z : RN
++ → RN , and xh(p) is the demand function that solves the utility maximisation

problem of household h.
1x(p) is short-hand for x(p) = (x1(p), x2(p), . . . , xH(p)).
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Walras’ law establishes some important properties of the excess demand function. The first part
is an abstract statement, from which the other two parts follow. The second part establishes
that if the N − 1 goods markets clear, then the last one does as well. This is very important,
because when solving simultaneous equations, it is tempting to believe that when there are m
equations and m unknowns, a solution can be found. However, the market clearing equations
are not independent of the household budget constraints, so this tempting conclusion is invalid.
The third part establishes that for all out-of-equilibrium prices, there is at least one goods
market in which demand exceeds supply, and at least one other goods market in which supply
exceeds demand. This will be useful for establishing the existence of pure-exchange equilibria
and understanding how an economy might converge to an equilibrium.

Theorem 5.2 (Walras’ law). Consider a pure-exchange economy (uh, eh)h∈H with strictly in-
creasing utility functions, and let z be its excess demand function.

(i) The excess demand function satisfies the property

p · z(p) = 0 for all p ∈ RN
++. (5.15)

(ii) If N − 1 markets clear at price p ∈ RN
++, then all markets clear.

(iii) For every price vector, the market does not clear if and only if there is excess demand
in one market and excess supply in some other market. That is, for every p ∈ RN

++,
z(p) 6= 0 if and only if there is some (i, j) such that zi(p) > 0 and zj(p) < 0.

Proof. (i) Since each household’s demand function satisfies the budget constraint,

p · (xh(p)− eh) = 0, (5.16)

summing up this equality over all households gives (5.15).

(ii) Without loss of generality, suppose that the first N − 1 markets clear at price p 6= 0.
Then

zj(p) = 0 for j ≤ N − 1 (5.17)

and hence

N−1∑
j=1

pjzj(p) = 0. (5.18)

Subtracting this equation from (5.15) gives pNzN(p) = 0, so the last goods market clears.



5.4. CHARACTERISING EQUILIBRIA 71

(iii) Fix a price vector p ∈ RN
++. If there is excess supply in any market i, then zi(p) < 0, so

z(p) 6= 0 and markets do not clear.
Conversely, suppose z(p) 6= 0. For the sake of contradiction, suppose that there is excess
demand in at least one market without excess supply in any other market, i.e. zi(p) > 0
for some i and zj(p) ≥ 0 for all j. However, this is impossible, because it implies
p · z(p) > 0, violating (5.15). A similar argument rules out excess supply in at least one
market without excess demand in any other market.

Example 5.1. Does Walras’ Law hold in an economy with only one goods market?
Answer. Yes. In an economy with only one market, no trade occurs at any price, and all
households consume their endowments. Therefore, the market always clears, and the excess
demand function is always zero, i.e. z(p) = 0 for all p. It follows that p · z(p) = 0 for all p.
Question 5.2. ✓ Consider a pure-exchange economy with two households and two goods, rice
and beans. The first household is endowed with one unit of rice, and the second household
with two units of beans. The households’ utility functions are

u1(x) = logx1 + 2 logx2 (5.19)
u2(x) = 2 logx1 + logx2. (5.20)

(i) Write down the equilibrium conditions, i.e. the households’ utility maximisation prob-
lems and the market clearing conditions.

(ii) Write down the equations that characterise the equilibrium.

(iii) Solve for the equilibrium allocation and prices.

Question 5.3. ✓ In the semiconductor industry, factories are only at the productive frontier
for a few years before a better technology is developed. Consider a market with three types of
goods: consumption, labour and computers. Households are endowed with the consumption
good and labour, and consume all three goods (i.e. incur disutility from working). Computers
are produced by firms. Computers become obsolete quickly, so assume they are non-storable.
There are two time periods. There are two firms, one that operates in both time periods,
and a more efficient firm that only operates in the second period. The more efficient firm
produces twice as much given the same labour input. Make the standard assumptions that the
utility functions are additively separable across time with the same preferences in each period,
smooth, increasing and quasi-concave; and the production functions are increasing, concave,
and have the possibility of inaction.

(i) Write down the households’ and firms’ optimisation problems. (Hint: don’t forget about
firm ownership.)

(ii) Define an equilibrium.
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(iii) Write down a Bellman equation for the firms the splits the input choices from the output
choices. Write formulas for the cost functions.

(iv) Show that the firms have increasing marginal cost.

(v) Show that the new firm’s marginal cost is half that of the old firm.

(vi) Show that in every equilibrium, the new firm produces more than the old firm in the
second period.

(vii) For which equilibrium prices would the old firm be inactive in the second period?

(viii) Suppose that the markets clear in the first period, but that there is a Dot Com bubble
in the second period, so that at market prices there is an excess supply of computers.
Use Walras’ law to discuss what happens in the markets for labour and consumption in
the second period.

(ix) * Explain why the Lagrange multipliers in each firms’ cost minimisation problem are
increasing in target output.

Let’s put this knowledge to work. One puzzle is: if people are impatient (with discount rate
β < 1), then why do we work and consume roughly the same amount each day during our life
time?2 Why does our impatience not lead us to consume more and work less at the start of
our lives, and consume less and work more at the end? Why does impatience not lead us to
sign Faustian contracts?

To model this, we will consider an economy with two types of goods: a non-storable
consumption good and labour. To capture time, we will treat both types of goods used at
different dates as distinct goods. So, if we have T = 45 time periods, then there are NT = 90
goods in total, with 90 prices, 90 market clearing conditions, and so on. We will write a
household’s consumption at time t ∈ {1, . . . , T} as ct, and their labour supply as lt. We will
use the Arrow-Debreu approach of modelling trade as one big futures market before time
starts.

We will assume there is one firm with production function y = f(l). The firm’s value
function (profit function) is

π(p, w) = max
lt

T∑
t=1

ptf(lt)− wtlt, (5.21)

where p and w are vectors of the output and labour (wage) prices, respectively. We write the
firm’s policy function as L(p, w) = (L1(p, w), . . . , LT (p, w)) where Lt(p, w) is the firms’ demand
for labour in period t given prices p and w. The firm’s output is defined similarly as Y (p, w).

2Actually, consumption over the life cycle is hump-shaped. We won’t attempt to review the literature here
though.
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We will assume each household has the same (per-period) strictly quasi-concave utility
function u(c, l), and the same discount factor β < 1. Each household has an equal share of
1/H in the firm. The household’s value function (indirect utility function) is

v(p, w, π) = max
{ct,lt}Tt=1

T∑
t=1

βt−1u(ct, lt)

s.t.
T∑
t=1

ptct =
T∑
t=1

wtlt +
1

H
π.

(5.22)

Question 5.4. ✓ Show that each household’s utility function,

U(c, l) =
T∑
t=1

βt−1u(ct, lt) (5.23)

is strictly concave if u is strictly concave.
Since each household has the same value function, each household h ∈ H has the same optimal
policy, x(p, w) = (x1(p, w), . . . , xT (p, w)), where xt(p, w) = (ct(p, w), lt(p, w)).3 If households
had different preferences, then they would have a different policy function, which we would
write xh(p, w).

An allocation in this model consists of each household’s consumption/labor choices, {(ct, lt)}t∈T ,
and the firm’s production choices {Lt}Tt=1.

We will now redefine a general equilibrium in the context of this model. This is a customary
thing to do in economics, because each model has its own little twist, it helps clarify to spell
it all out. Take careful note of the placement of the stars – indicating endogenous variables.
Also note that we provide two alternatives formulations – one using policy functions, and one
writing the optimisation problems directly. Of course, it is never necessary to specify both
ways; both are widespread, so we illustrate both.

A general equilibrium consists of an allocation {(c∗t , l∗t , L∗
t , Y

∗
t )}t∈T , prices {(p∗t , w∗

t )}t∈T –
sometimes written (p∗, w∗) for short – such that the following conditions are met:

• The allocation solves the household’s problem:

{(c∗t , l∗t )}t∈T ∈ argmax
ct,lt

T∑
t=1

βt−1u(ct, lt) (5.24)

s.t.
T∑
t=1

p∗t ct =
T∑
t=1

w∗
t lt + π∗/H, (5.25)

where π∗ =
∑T

t=1(p
∗
tY

∗
t − w∗

tL
∗
t ) is the profits of the firm.

3* There is only one optimal policy, since the household has a strictly quasi-concave utility function with a
linear (and hence quasi-convex) budget constraint.
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• The allocation solves the firm’s problem, i.e. Y ∗
t = Yt(p

∗, w∗) and L∗
t = Lt(p

∗, w∗) for all
t, or equivalently,

{L∗
t}t∈T ∈ argmax

Lt

T∑
t=1

p∗tf(Lt)− w∗
tLt. (5.26)

• The markets clear, i.e. for all t ∈ T ,

L∗
t =

∑
h∈H

l∗th (5.27)

Y ∗
t = f(L∗

t ) =
∑
h∈H

c∗th, (5.28)

or equivalently, z(p∗, w∗) = 0, where z is the excess demand function in vector form:

z(p, w) =

(
L(p, w)−

∑
h∈H

l(p, w),
∑
h∈H

c(p, w)− Y (p, w)

)
. (5.29)

Now that we have defined what equilibria are, we can characterise them. Typically, this
involves taking all of the first-order conditions, and all but one of the market clearing condi-
tions (one of them is redundant because of Walras’ law). Since each household has the same
preferences and budget constraint, we focus our attention on symmetric equilibria, i.e. equi-
libria in which all households make identical decisions. This means we can drop the household
h subscript.

The first-order conditions for the household’s problem (5.24) at time t with respect to ct
and lt are

βt−1uc(c
∗
t , l

∗
t ) = λ∗p∗t (5.30)

βt−1ul(c
∗
t , l

∗
t ) = −λ∗w∗

t . (5.31)

The first-order conditions for the firm’s problem (5.26) in time t with respect to Lt:

f ′(L∗
t )p

∗
t = w∗

t . (5.32)

Thus, the symmetric equilibria are characterised by the following equations: the households’
first-order conditions (5.30), (5.31), the firm’s first-order condition (5.32), the households’
budget constraint (5.25), a price normalisation (such as p∗1 = 1), and all but one of the market
clearing conditions (5.27) and (5.28).

We can eliminate the wages w∗
t by substituting the firm’s first-order conditions (5.32) into

the other equations. The households’ first-order conditions become:

βt−1uc(c
∗
t , l

∗
t ) = λ∗p∗t (5.33)

βt−1ul(c
∗
t , l

∗
t ) = −λ∗f ′(L∗

t )p
∗
t , (5.34)
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Dividing the second by the first equation, and substituting the market clearing conditions
for period t in gives

ul(f(Hl∗t )/H, l∗t )

uc(f(Hl∗t )/H, l∗t )
= −f ′(Hl∗t ). (5.35)

We now have one equation with one unknown, l∗t . It is unclear if this equation has one or
several solutions. (If we had chosen particular functional forms, it would be easier to tell.) But
what is clear is that time is irrelevant. Henceforth, we will just focus on equilibria in which
all labour choices follow the same solution to the (5.35). In such equilibria, the same labour
choice is chosen in each period, and by working backwards, we through our substitutions, we
can check that consumption stays the same also.

Thus, we have established that households in this economy do not sign Faustian contracts.
But why not? What is it about prices that lead impatient people to not sign Faustian Arrow-
Debreu futures contracts with each other?

Taking the quotient of two household’s consumption first-order conditions in adjacent pe-
riods t and t+ 1 gives:

βtuc(c
∗
t+1, l

∗
t+1)

βt−1uc(c∗t , l
∗
t )

=
λ∗p∗t+1

λ∗p∗t
. (5.36)

Since consumption and labour are stationary, this simplifies to:

β =
p∗t+1

p∗t
. (5.37)

Thus, the answer to our question is: prices decrease over time in a way that exactly cancels out
the households’ impatience. Nobody would be willing to offer a Faustian contract (involving
a big party today in exchange for enslavement in the distant future), because the wages in
the distant future are low. The Faustian contract would have to be too generous to make
the worker accept it. In other words, workers don’t write Faustian contracts with each other
because they all have the same amount of impatience. If another household (“the devil”) were
more patient, then Faustian contracts might be traded in equilibrium.
Question 5.5. ✓ Now suppose that the consumption good is storable, so that if the household
purchases ct today, they may consume a different amount Ct and store the remainder. Show
that the households would never make use of this storage capability. (Hint: reformulate the
households’ budget constraint and look at the prices in the original model above.)
For more similar questions, see the following practice exam questions: 1.iii, 1.iv, 1.v, 3.ii, 4.ii,
4.iii, 4.iv, 5.ii, 5.iii, 5.iv, 5.vi, 6.ii, 6.v, 7.ii, 7.iii, 7.iv, 8.ii, 9.ii, 10.ii, 10.iv, 11.ii, 12.iii, 13.ii,
13.iii, 14.v, 15.ii, 16.ii, 17.ii, 17.v, 18.ii, 18.v, 18.vi, 19.v, 22.iv, 23.ii, 23.v, 25.ii, 25.v, 26.ii,
26.iii, 28.ii, 30.iii, 30.iv, 30.v, 33.ii.
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5.5 Efficiency of Equilibria
This section establishes conditions under which equilibria are efficient. The main theorem of
this section argues that if people are at liberty to trade with each other, then a socially desirable
allocation will emerge. This is what Smith (1759) referred to as the invisible hand.4 It is
perhaps the most controversial idea known to humanity! Of course, there are many caveats
to the argument. Much of the study of economics is about understanding the details of the
caveats.
Theorem 5.3 (First Welfare Theorem). Consider a pure-exchange economy with increasing
utility functions uh : RN

+ → R and endowments eh ∈ RN
+ . If (x∗, p∗) is an equilibrium in this

economy, then x∗ is an efficient allocation.

Proof. Suppose x̂ ∈ RHN
+ is an allocation that dominates x∗. We will show this implies that x̂

is infeasible. Since every dominating allocation would therefore be infeasible, we will conclude
that x∗ is efficient.

The supposition implies that each household is at least as well off under x̂ (i.e. uh(x̂h) ≥
uh(x

∗
h)). Since each household has an increasing utility function, x̂h can not be cheaper than

x∗
h for any household, so we have established that

p∗ · x̂h ≥ p∗ · x∗
h.

Moreover, since x̂ dominates x∗, this must be a strict inequality for some household. Summing
up over households, we deduce that aggregate expenditure is greater under the new allocation
x̂, i.e.

p∗ ·
∑
h

x̂h > p∗ ·
∑
h

x∗
h.

However, all feasible allocations have the same aggregate expenditure, p∗ ·
∑

h eh, so x̂ is
infeasible.

When there are only two goods, the first welfare theorem is straight-forward to understand.
If there is a Pareto-improving allocation, then this means that two people can trade their two
goods to reach that allocation. However, when there are more than two goods, reaching a
Pareto-improving allocation might require a long chain of bilateral transactions. For example,
real-estate transactions often occur in long chains, where each household sells their old house
and buys a new house. The first welfare theorem establishes that market equilibria are Pareto
efficient, even if a long chain of bilateral transactions is necessary to reallocate resources starting
from the initial endowment.

The first-welfare theorem for production economies is based on similar logic:
4The phrase “the invisible hand” only appears three times in Adam Smith’s writings, and there is some

controversy over what Smith meant by it. Nevertheless, the invisible hand now has a life of its own. See
https://en.wikipedia.org/wiki/Invisible_hand.

https://en.wikipedia.org/wiki/Invisible_hand
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Theorem 5.4 (* First Welfare Theorem with production). Consider a production economy
with increasing utility functions uh : RN

+ → R, endowments eh ∈ RN
+ , production sets Yi, and

ownership shares sh,i. If (x∗, y∗, p∗) is an equilibrium in this economy, then x∗ is an efficient
allocation.

Proof. Suppose (x̂, ŷ) is an allocation that dominates (x∗, y∗). We will show this implies that
(x̂, ŷ) is infeasible. Since every dominating allocation would therefore be infeasible, we will
conclude that (x∗, y∗) is efficient.

Since each utility function is increasing, each household spends all of their money, so each
budget constraint holds with equality. Summing up over all households gives:

p∗ ·
∑
h

x∗
h = p∗ ·

∑
h

eh + p∗ ·
∑
i

y∗i . (5.38)

Coincidentally, since (x̂, ŷ) is (supposedly) feasible, we know that
∑

h x̂hn ≤
∑

h ehn +
∑

i ŷin
and hence

p∗ ·
∑
h

x̂h ≤ p∗ ·
∑
h

eh + p∗ ·
∑
i

ŷi. (5.39)

In other words, the new allocation (x̂, ŷ) is feasible only if amending the aggregate budget
constraint (5.38) by replacing the equilibrium allocation with the new allocation ends up with
the relaxed aggregate budget constraint (5.39). We will show this is never the case when (x̂, ŷ)
Pareto dominates (x∗, y∗). Specifically, we will prove that replacing x∗ with x̂ strictly increases
the left side, and replacing y∗ with ŷ weakly decreases the right side. We will conclude that
(x̂, ŷ) is infeasible.

First, we consider replacing x∗ with x̂. Since x∗
h is an optimal choice with prices p∗, x̂h can

not be cheaper at equilibrium prices than x∗
h for any household, so we have established that

p∗ · x̂h ≥ p∗ · x∗
h.

Moreover, since x̂ dominates x∗, this must be a strict inequality for some household. Summing
up over households, we deduce that aggregate household expenditure is greater under the new
allocation x̂, i.e.

p∗ ·
∑
h

x̂h > p∗ ·
∑
h

x∗
h.

Second, we consider replacing y∗ with ŷ. Since each firm maximises profits under equilib-
rium prices by choosing y∗i , we know that

p∗ · ŷi ≤ p∗ · y∗i .

Summing up over all firms gives

p∗ ·
∑
i

ŷi ≤ p∗ ·
∑
i

y∗i .

As discussed above, these two points imply that (5.39) fails, so the alleged Pareto improve-
ment (x̂, ŷ) is in fact infeasible.
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5.6 *Existence of Equilibria
An equilibrium occurs when all markets clear, i.e. supply equals demand. This section in-
vestigates two related questions: is there any vector of market prices such that all markets
clear, and how do markets find these prices? The main conclusion is that under the standard
assumptions we have been making, there is an equilibrium:
Theorem 5.5. Consider a pure-exchange economy in which each utility function uh : RN

+ → R
is continuous, strictly increasing, and strictly quasi-concave, and aggregate endowments are
strictly positive, i.e.

∑
h∈H ehn > 0 for all goods n. In any such economy, there exists a

pure-exchange equilibrium (x∗, p∗).
The proof we will present is based on a price-adjustment process, in which prices increase when
there is excess demand in that market. When this adjustment process stops, the market is in
equilibrium.

The proof makes use of a fixed point theorem from topology. A fixed point of a
function f : X → X is a point x such that x = f(x). An equilibrium is like a fixed point – in
an equilibrium, nobody wants to change their decisions. However, prices are not decided by
the households, so the proof of existence of equilibrium is a bit more delicate. One very simple
example of a fixed point theorem (illustrated in Figure 5.4) is the following:
Theorem 5.6. If f : [0, 1] → [0, 1] is continuous, then f has a fixed point.

x

y

f

1

1

0

Figure 5.4: Every continuous function f :
[0, 1] → [0, 1] crosses the 45◦ line.

Proof. Consider the function g(x) = f(x) − x. Notice that g is continuous, g(0) ≥ 0, and
g(1) ≤ 0, so by the intermediate value theorem (Theorem C.27), g must cross 0 at some point
x∗ ∈ [0, 1]. At this point f(x∗)− x∗ = 0, or equivalently x∗ = f(x∗).

For our purposes, we will need a more advanced fixed-point theorem, whose proof is typically
taught in an advanced class on topology. The claim made by the theorem is relatively simple,
once you understand the concepts of continuity and compactness. However, all of its proofs
are quite difficult, and it is probably the only important theorem used in economics that few
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economists understand. Moreover, this theorem is perhaps the most important theorem in
the history of modern mathematics. The various attempts to prove versions of this theorem
lead to the development of fundamental ideas in modern mathematics, such as homology and
homotopy. These attempts also tested the limits of mathematical reasoning, such as whether
a proof needs to be “constructive” to be sound.

Brouwer first proved the two-dimensional case using homotopy, and then the n-dimensional
case using homology. He then disavowed both proofs on the grounds they are non-constructive!
The homology approach is presented in Hatcher (2002, Chapter 2) and (Munkres, 1984, Section
21) – the former is much easier to read. Milnor (1965, Section 2) presents a different proof
based on differentiable topology. Sperner (1928) developed a proof based on combinatorics;
this is the easiest to learn – see for example Bruno Codenotti’s lecture slides, http://www.
dima.unige.it/~pusillo/seminari/codenotti.pdf, or Jacob Fox’s (2009, MAT307 Lecture
3) lecture notes. Unfortunately, none of these proofs lead to a useful algorithm for calculating
fixed points. To understand why, see Hirsch, Papadimitriou and Vavasis (1989), especially
their Figure 5.
Theorem 5.7 (Brouwer’s Fixed Point Theorem). If f : X → X is continuous and X ⊂ RN is
non-empty, convex and compact, then f has a fixed point.
We now use Brouwer’s fixed point theorem to establish the existence of an equilibrium.

Proof of Theorem 5.5. First we tell a story about the proof, before being careful about the
logic. Suppose that at market prices p, there is excess demand for hotel rooms. That is, there
are ”no vacancy” signs everywhere, and people queueing up to get a room. This suggests that
hotel rooms are too cheap. So if we were to tinker with prices a little bit (with the hope of
eventually getting an equilibrium), what could we do?

One option would be to increase the prices by £100 per night. But this might be too much!
Another option would be to increase the prices by the number of people waiting for a hotel

room, i.e. the excess demand for hotel rooms. This has the advantage that as the market gets
closer to clearing (low excess demand), then the adjustment gets small. But this option has
another problem: if the price of hotel rooms starts out at £0, then there would be infinite
excess demand!

The next option combines the two previous options: if there are people waiting for hotel
rooms, then increase the price by at the number of people waiting – but by no more than £100
per night. One potential problem with this proposal is that it never reduces prices – it only
increases them. Surprisingly, this does not matter! As a smart consultant named Léon Walras
pointed out, if there are vacant hotel rooms (i.e. they are too expensive), then there must be
another market, say taxis, where everyone is queueing up without getting served. So the taxi
price would increase a bit to reduce the queues for taxis.

A more serious problem with this proposal is that prices could keep increasing without
ever stopping. The previous option can be amended slightly: after the price increases are
calculated, all the prices could be scaled down so they add up to 1. This rescaling does not
cause any trouble, because only relative prices matter in a competitive economy.

http://www.dima.unige.it/~pusillo/seminari/codenotti.pdf
http://www.dima.unige.it/~pusillo/seminari/codenotti.pdf
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This price adjustment process is continuous, and stays within a well-behaved set of possible
prices. So Brouwer says that there must be a price vector in which no adjustment is necessary.
Note that Brouwer does not say that starting from the wrong prices will eventually lead to
correct prices. Unfortunately, this is not true, and in practice does not lead to a useful way to
calculate equilibrium prices.

Recall that (x(p∗), p∗) is an equilibrium if and only if there is no excess demand, i.e.
z(p∗) = 0. Our plan is to use Brouwer’s fixed point theorem to establish such a p∗ exists.

Note that z(p) is undefined when any price pi is zero because households would like to buy
an infinite amount of good i. Thus, we define the truncated excess demand

z̄i(p) = min {1, zi(p)} ,

which limits the excess demand to 1. This is well defined, inherits continuity from each
household’s demand function (see Theorem 3.4), and maintains the property that (x(p∗), p∗)
is an equilibrium if and only if z̄(p∗) = 0.

The price of good i is too low if there is excess demand for it, i.e. z̄i(p) > 0. So, we could
imagine market prices adjusting to equalize supply and demand with

p′i = pi +max {0, z̄i(p)} .

We argue that we have arrived at an equilibrium if (and only if) no more adjustments need
to be made. This is somewhat surprising, because the adjustments only increase prices – they
do not decrease prices when there is excess supply, i.e. z̄i(p) < 0. We do not need to decrease
prices in this case, because part (iii) of Theorem 5.2 establishes that if there is excess supply
in one market, then there is excess demand in another market; thus there is always another
price to be increased, so we would not prematurely run out of adjustments to make.

To ensure that the prices do not increase endlessly, we normalise the price adjustments so
that prices add up to one:

p′′i =
p′i∑
j p

′
j

. (5.40)

So, we have defined a continuous function f : p 7→ p′′, with a domain and co-domain of
X =

{
p ∈ RN

+ :
∑

i pi = 1
}
which is non-empty, convex, and compact.5 This mapping has the

property that p is a fixed point if and only if p is an equilibrium price vector. By Brouwer’s
fixed point theorem, there exists a fixed point p∗ of f , and ({xh(p

∗)} , p∗) is an equilibrium.

If any of the conditions of Theorem 5.5 are violated, then there might not be any equilib-
rium. For example, consider the economy depicted by the Edgeworth (1881) box in Figure 5.5.
This economy violates one of the conditions of the theorem: household A’s utility function is
not quasi-concave because its upper contour sets are not convex. An equilibrium consists of

5Another way of writing the same thing: f(p) = g(h(p)) where gi(p) = pi∑
j pj

and hi(p) = pi+max {0, z̄i(p)}.
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a point representing an allocation, and a line representing the budget constraint. The slope
of the budget line corresponds to the relative prices, and in an equilibrium, the budget line
must pass through both the endowment and the equilibrium allocation (since both are just
affordable). Finally, to be an equilibrium, indifference curves of both households must be
tangent to the budget line. It is impossible to draw such a budget line in this picture.

A’s preferences
B’s preferences
endowment
both indifferent

xA1

xA2

xB1

xB2

Figure 5.5: An economy without an equilibrium.

Question 5.6. ✓ * Find an example of a continuous function f : X → X on a compact set X
that does not have a fixed point. Hint: try X = [0, 1] ∪ [2, 3].
For more similar questions, see the following practice exam questions: 3.vi, 4.v, 7.v, 8.iv, 9.iv,
11.v, 12.v, 14.vi, 16.v, 17.vi, 33.vi.

5.7 Implementation of Efficient Allocations
We established in Section 5.5 that all equilibria have efficient allocations. However, there are
many efficient allocations and a society might prefer some efficient allocations to others. For
example, allocations with less inequality may be more desirable. In this section, we study how
a government may implement any efficient allocation as an equilibrium with an appropriate
tax policy.

As before, we focus attention on pure-exchange economies for simplicity. We assume that
lump-sum taxes affect the consumers’ incentives as follows.
Definition 5.11 (Pure exchange equilibrium with lump-sum taxes). Consider a pure-exchange
economy in N goods involving utility functions u and endowments e. A feasible allocation x∗

along with prices p∗ form a pure exchange equilibrium with lump-sum taxes th if (1)
there are zero total taxes levied, i.e.

∑
h th = 0 and (2) for each household h,

x∗
h ∈ argmax

x̂h∈RN
+

u(x̂h) (5.41)

s.t. p∗ · x̂h ≤ p · eh − th, (5.42)
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and (3) markets clear, i.e. ∑
h∈H

x∗
h =

∑
h∈H

eh. (5.43)

The second welfare theorem establishes that every efficient allocation can be implemented
with an appropriate tax policy. When reallocating resources from one efficient allocation to
another, some consumers are made better off, and others are made worse off. Implementing
such a reallocation involves taxing those that will be made worse off, and subsidizing those
that are to be made better off.
Theorem 5.8 (SecondWelfare Theorem). Consider a pure-exchange economy in which all house-
holds have continuous, increasing and strictly quasi-concave utility functions uh : RN

+ → R
and endowments of eh ∈ RN

+ , where aggregate endowments of each good n are positive, i.e.∑
h ehn > 0. If x∗ ∈ RNH

++ is an efficient allocation then there exist some lump-sum taxes
{t∗h} such that there exists some prices p∗ ∈ RN

+ in which (x∗, p∗, t∗) is an equilibrium given
endowments e.

Proof. This proof was discovered by Maskin and Roberts (1980).
We outline the proof entirely in words first, and then incorporate mathematics below.

Suppose Tony Atkinson (who was a pioneer in studying inequality) has a favourite allocation
of resources, x∗ he would like to implement.

Option 1 would be to hire Robin Hood (a fictional thief who hid in Sherwood Forest
in Nottinghamshire that stole from the rich and gave to the poor) to break into everyone’s
apartments one night, and rearrange resources as required. For example, he might swap your
sofa with one of Bill Gates’ sofas. When everyone wakes up in the morning, they would have
a big surprise. Markets would open at prices p∗, and everyone would think about trading –
perhaps dreaming about getting their old furniture back. But since Atkinson’s allocation is
efficient, nobody can actually afford to buy anything better than what they have – there are
no gains from trade available. So everyone gives up on their dreams, and sticks to Atkinson’s
allocation (x∗).

Option 2 would be to hire Margaret Thatcher (a politician who caused riots because she
was overly fond of the Second Welfare Theorem) to implement a tax. According to Margaret
Thatcher’s scheme, some people (like Bill Gates) would pay a positive tax, and some (like
you) would pay a negative tax. (Actually, Thatcher’s poll tax did not involve negative taxes
– perhaps this was why she suffered so many riots! But we digress.) How would Thatcher
calculate her tax policy? She would use the prices from Option 1 above to calculate the market
value of what each household would lose (the endowment eh) and gain (what Atkinson wants
to give them, x∗

h), and charge or refund the difference.
Now, the budget constraint for each household is identical under Option 1 (after every-

one wakes up) and under Option 2 (after Thatcher has taxed everyone). So, both options
involve the same equilibrium allocation (according to Atkinson’s plan, x∗) and prices (p∗). So
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Option 1 and Option 2 achieve the same ends by different means (Robin Hood’s apartment
burglary versus Margaret Thatcher’s taxes). We conclude that Thatcher’s taxes implement
the Atkinson’s allocation x∗.

First we construct prices. Consider a different economy in which the households’ preferences
are unchanged, but they are endowed with the efficient allocation x∗. By Theorem 5.5, there
exists an equilibrium (x′, p′) (without lump-sum taxes). Since endowments are feasible for
each household, it follows that all households are weakly better off under x′ compared
to x∗, i.e. uh(x

′
h) ≥ uh(x

∗
h) for all h. However, x∗ is efficient, so in fact all households are

indifferent between the x∗ and x′ allocations. (In fact x∗ = x′, since we assumed each utility
function is strictly quasi-concave. To see this, if uh(x

∗
h) = uh(x

′
h), then Theorem D.10 implies

that 1
2
x∗
h+

1
2
x′
h is strictly preferred to x∗

h and x′
h. This violates the optimality of x∗

h and x′
h.) It

follows that (x∗, p′) is an equilibrium given endowments x∗. Henceforth, we will use the prices
p∗ = p′.

Next we construct the tax policy using the prices p∗ we just constructed. Household h is
endowed with wealth p∗·eh, but requires wealth p∗·x∗

h to finance its consumption. Therefore, we
set the tax to the difference t∗h = p∗ ·eh−p∗ ·x∗

h so that household h can just afford x∗
h. We check

that the government does not have to print or burn money to finance these taxes. Because x∗

is feasible given endowment e, it satisfies materials balance,
∑

h x
∗
h =

∑
h eh. Therefore, the

total taxes levied are∑
h

t∗h =
∑
h

p∗ · (eh − x∗
h) = p∗ ·

∑
h

(eh − x∗
h) = p∗ · 0 = 0.

Finally we verify that (x∗, p∗, t∗) is an equilibrium given endowments e. Under the prices
p∗, the households face identical budget constraints when (i) they have endowment x∗ and (ii)
when they have endowments e with taxes t∗. Since (x∗, p∗) is an equilibrium with endowment
x∗, it follows that (p∗, x∗, t∗) is also an equilibrium with endowment e.

Question 5.7. ✓ Suppose there is an equal-sized population of immigrants and locals, and all
immigrants are identical and all locals are identical. All consumers share the same preferences.
Immigrants have the same labor endowment as locals, but locals own all of the land. Devise
a government policy using lump-sum taxes to implement equal utility for all consumers.
Question 5.8. ✓ Consider a pure-exchange economy of households with identical utility func-
tions over many types of gifts. Santa Claus is not part of the economy (he lives on the North
Pole), but has all of the endowments for Christmas. He has utilitarian preferences, i.e. he
allocates presents to maximise the sum of all households’ utilities.

(i) Suppose that every household has strictly convex preferences. Prove that every household
receives the same present.

(ii) Suppose there is a market for trading the presents afterwards. Prove that there would
be no trade.
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For more similar questions, see the following practice exam questions: 4.vi, 6.vi, 7.vi, 10.v,
13.vi, 15.v, 16.iv, 19.vi, 22.v, 23.vi, 25.v, 26.vi, 28.v, 28.vi, 30.vi, 32.v.



Appendix A

Introduction to Mathematical
Appendices

This appendix lists mathematical results used throughout. The coverage here is not com-
plete. There are many books that introduce the relevant ideas. One book, Rosenlicht (1968),
introduces naive set theory, topology and calculus with plenty of pictures and explanation.
Daepp and Gorkin (2011, Chapters 25-26) and Kane (2016) also cover topology, but with an
emphasis on how to write proofs. Convex analysis is covered by Luenberger (1969) and Boyd
and Vandenberghe (2004); both books are well illustrated and explained. De la Fuente (2000)
covers similar material, but in a way that is more targeted to economists. Other popular
books include Rudin (1976), Simon and Blume (1994), and Ok (2007). There is also a lot of
material available online for free, including the lecture notes Andrew Clausen studied as an
undergraduate, and in Wikipedia.1

1See, for example: http://metis.ms.unimelb.edu.au/~s620311/pdf/NewMetric07.pdf http://en.
wikibooks.org/wiki/Topology/Metric_Spaces
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Appendix B

Naive Set Theory

Naive set theory is the notation of modern mathematics. It is quite adequate for studying
most useful maths concepts and is easy to use with everyday English. However, for some
philosophical issues it is too vague. Axiomatic set theory (which we do not describe here)
was developed for the task of understanding the limits and potential problems with modern
mathematics.1 Axiomatic set theory is quite complicated to read – it’s like reading a cryptic
computer program – so naive set theory is used more widely.2

Naive set theory mixes highly structured notation (involving mathematical symbols) with
standard English. However, despite the use of symbols, we only ever write in complete sentences
that obey the usual rules of English grammar, such as ending with a full-stop. For example,
the following are all complete sentences that can be read aloud:

Two equals one plus one.
Two equals 1 + 1.
Two equals

1 + 1.

2 = 1 + 1.
The equilibrium quantity

Q∗

occurs where the supply and demand curves cross.
At the equilibrium quantity Q∗,

MC(Q∗) = MB(Q∗).

1A good introduction is Gonzcarowski and Nisan’s “Mathematical Logic through Python”, https://www.
logicthrupython.org/.

2To see an example of the cryptic nature of axiomatic set theory, compare the usual proof of Banach’s fixed
point theorem (Theorem C.16) to a formal proof, http://us.metamath.org/mpegif/bfp.html along with two
lemmas http://us.metamath.org/mpegif/bfplem1.html and http://us.metamath.org/mpegif/bfplem2.
html.
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B.1 Sets
A set is a collection of items called elements. A set may be defined either by listing the
elements, such as

V = {attack, retreat, surrender} ,

or in terms of some mathematical/logical description, such as

A = {n : n is an even number and n < 100} .

The first example is read in English as “V is the set consisting of attack, retreat, and surrender.”
The second equation is read in English as “A is the set of numbers n such that n is an even
number and n is less than 100.” Two sets are equal if they have the same elements; everything
else such as the way the set was described is irrelevant. For example {1, 2, 3} = {3, 2, 1} and
{2, 3, 5, 7} = {n : n is a prime number less than 10}.

A set containing only one item is called a singleton. For example, the singleton containing
Christmas Pudding is {Christmas Pudding}. Note that Christmas Pudding 6= {Christmas Pudding}.
The latter might be a (very small) restaurant’s menu, and the former is a possible item off the
menu.

Sets should not be confused with tuples, where the order does matter. To avoid confusion,
tuples are always written with round, not curly brackets. For example, the tuple, (1, 2, 3) is not
equal to (3, 2, 1). Tuples are widely used in mathematics and economics. Vectors are an obvious
example of tuples. Less obvious examples include the tuple of utility functions of each player in
a game, the (price, quantity) tuple of an equilibrium, or the (point set, distance function) tuple
that comprises a metric space. Tuples with two, three or n items are called pairs, triples,
and n-tuples respectively.

The notation a ∈ A is shorthand for saying “a is an element of A” or more simply, “a is in
A.” Similarly, a 6∈ A is read “a is not an element of A.”

Some sets in mathematics are very important, and have their own symbols:

• the empty set, ∅ = {}, which has no elements.

• the whole numbers, also called the natural numbers, N = {0, 1, 2, . . . } .

• the integers, Z = {. . . ,−1, 0, 1, 2, . . . } . Z stands for Zahlen, which means numbers in
German.

• the rational numbers, Q =
{

p
q
: p ∈ Z, q ∈ N, q 6= 0

}
. The term rational derives from

ratio, and the Q stands for quotient.

• the real numbers, R. (This set is somewhat complicated to define. The most popular
definition is called Dedekind cuts.)
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• the non-negative real numbers, R+ = {x ∈ R : x ≥ 0}, the positive real numbers,
R++ = {x ∈ R : x > 0}.

• intervals have a short-hand notation, [a, b] = {x ∈ R : a ≤ x ≤ b} and [a, b) = { x ∈ R :
a ≤ x < b } and so on.

If all of the elements of a set A are also elements of B, then we say that A is a subset of
B and write A ⊆ B. If A ⊆ B and B ⊆ A, then A = B. If A ⊆ B and A 6= B, then we write
A ⊂ B – although some people use ⊂ to mean ⊆ instead!

There are several ways of combining sets. The union of the sets A and B, written A∪B is
defined as {x : x ∈ A or x ∈ B}. It is also possible to take the union of more than two sets. If
A is a set of sets, then the union of all of those sets is ∪A∈AA = {x : x ∈ A for some A ∈ A} .
The intersection of the sets A and B, written A∩B is defined as {x : x ∈ A, x ∈ B}. (When
two conditions are listed like this, then both must be met.) The complement of a set A ⊆ X,
denoted X\A or Ac when there is no ambiguity, is defined as {x ∈ X : x 6∈ A}. For example,
R\ {0} is the set of all real numbers except 0. We say that A and B are disjoint if A∩B = ∅.
We say that a and a′ are distinct elements of A if a 6= a′ and a ∈ A and a′ ∈ A.

TheCartesian product of two setsA andB, writtenA×B is defined as {(a, b) : a ∈ A, b ∈ B}.
For example, {1, 2} × {x, y} = {(1, x), (1, y), (2, x), (2, y)} and ∅ × {1, 2} = ∅. The Cartesian
product of a set with itself, A× A may be abbreviated to A2. Similarly A× A× A = A3 and
so on.

For instance, suppose H is the set of all holidays, and B ⊂ H is the set of affordable
holidays. If x ∈ B then this means x is an affordable holiday. If x ∈ (H\B), then this means
that x is an unaffordable holiday.

The most important examples of Cartesian products are R2, R3, and Rn. The first of
these sets, R2, is the set of all coordinates on the real plane, {(x, y) : x ∈ R, y ∈ R}, which
is two-dimensional. For example, (0, 0) ∈ R2 and (1, 1) ∈ R2, but 0 6∈ R2 and (0, 0, 0) 6∈
R2. The second of these sets, R3, is the set of all coordinates in three-dimensional space,
{(x, y, z) : x ∈ R, y ∈ R, z ∈ R}. Finally, Rn is the set of coordinates in n-dimensional space,
i.e. Rn = {(x1, x2, . . . , xn) : x1 ∈ R, x2 ∈ R, . . . xn ∈ R} .
Question B.1. ✓ True or false: 3 ∈ {1, 2, 3, 4, 5}?
Question B.2. ✓ True or false: {3} ∈ {1, 2, 3, 4, 5}?
Question B.3. ✓ True or false: {3} ⊆ {1, 2, 3, 4, 5}?
Question B.4. ✓ True or false: Q and R are disjoint sets.
Question B.5. ✓ Suppose the set of workers is W , the set of possible shift times is T , and
the set of shops is S. A possible work shift is (Tim, 10:00,Kwik-E-Mart), where Tim ∈ W ,
10am ∈ T and Kwik-E-Mart ∈ S. Formulate the set of all possible work shifts.
Question B.6. ✓ Let A = {Atlee,Churchill} be the set of election candidates. Suppose there
are 106 voters, and that they all vote. One possible outcome for the election is {(Atlee, 0), (Churchill, 106)}.
Formulate the set of all possible election outcomes.
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Question B.7. ✓ Suppose M is the set of men, W is the set of women, and

C = {(m,w) ∈ M ×W : m is married to w} .

Formulate the set of married men in terms of the set C.

B.2 Definitions
Mathematics usually involves short-hand terminology and notation called definitions. In fact,
this section contains many definitions. For example, “the Cartesian product of A and B” and
“A×B” were defined above to be {(a, b) : a ∈ A, b ∈ B}. Many definitions appear throughout
these notes; for example free disposal is defined in Section 2.1, Definition 3.2 defines utility
functions, and Definition 5.5 defines Pareto efficiency.

Some definitions identify a particular object with the word the (as opposed to a). For
example, “let x be the number 1 + 1” refers to a particular number, two. Similarly, you could
write “let x be the square root of 4.” However, this definition is ambiguous, because there
are two real square roots of 4 (namely, 2 and -2). In other words, x is not uniquely defined.
Similarly, you could write “let x be the square root of -1.” However, there is no real square-root
of -1. In this case, we say x does not exist. If a definition satisfies both criteria – existence
and uniqueness – then we say that the object is well-defined. For example, “the positive
square-root of 4” is well-defined; it is 2. This is often a difficult issue in economics. We would
like to say things like “if taxes increase, then the equilibrium’s price goes down.” But “the
equilibrium” is often not well-defined – or at least, it is a lot of work to determine whether it
is well-defined.
Question B.8. ✓ Let x be the biggest whole number. Is x well-defined?
Question B.9. ✓ Let x be the real number such that x2 = 1. Is x well-defined?
Question B.10. ✓ Let f(x) = x(100 − x) be the tax revenue when the tax rate is x%, i.e. f
is a Laffer curve. Let x∗ be the tax rate that raises no revenue. Is x∗ well-defined?

B.3 Functions
A function describes a relationship between two sets – a domain set and co-domain set.
Specifically, for every element of the domain, the function specifies a corresponding element
of the co-domain. If f is a function with domain A and co-domain B, this information may
be summarised as f : A → B. For example, f(x) = x2 is a function f : R → R. Just like
sets, functions are equal if they have the same domain and co-domain, and associate the same
elements to each other. For example, g(y) =

√
y4 is the same function as f .

The range of a function f : A → B is the set range(f) = {f(a) : a ∈ A}. The range is a
subset of the co-domain, but they need not be equal. For example, the range of the function f
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defined above is R+. It is easier to compare two functions if they share the same domains and
same co-domains. Therefore, it is useful to accommodate the co-domain being different from
the range, because we might want to compare two functions that have different ranges.

Sometimes, it’s convenient to talk about a function without giving it a name. So, instead
of discussing the function named f defined by f(x, y) = xy, we sometimes write the same
function anonymously as (x, y) 7→ xy.

One special function, called the indicator function of a set A ⊂ X, denoted I(A) or
1(A), is the function with domain X and co-domain {0, 1} defined by

I(A)(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

Indicator functions are sometimes written in terms of true/false statements. For example, if
(a, b) ∈ R2, then I(a < b) is shorthand for{

1 if a < b,
0 if a ≥ b.

Question B.11. ✓ Let M be the set of married men and W be the set of all women. Let f(m)
denote the wife of m. Is f : M → W defined in this way a function? Does the answer depend
on whether polygamy is possible?
Question B.12. ✓ Let M be the set of men and W be the set of all women. Let f(m) denote
the wife of m. Is f : M → W defined in this way a function?

B.4 Statements
We say that statement X implies Y if Y is true whenever X is, and is sometimes abbreviated
as X =⇒ Y . For example “x > y implies x ≥ y” is a true statement. We say that statement
X is a stronger statement than Y if X implies Y . For example “x is an even number” is a
stronger statement than “x is an integer.” Of course, weaker statement is defined similarly.
For example, “(p∗, q∗) is an efficient equilibrium” is a stronger statement than “(p∗, q∗) is an
equilibrium.”

Many statements are of the form “If A, then B implies C” (which is logically equivalent
to “If A and B then C.”) For example, “Suppose f : X → R is a differentiable function. If
x∗ maximises f then f ′(x∗) = 0.” The converse of a statement is when the last two parts
are swapped, i.e. “If A, then C implies B.” Of course, the converse isn’t necessarily true,
even when the original statement is true. In this example, f ′(x∗) = 0 might mean that x∗ is
a minimum, a maximum, or an inflection point, so it is false. If we wish to consider whether
both a statement and its converse are true simultaneously, then it is common to write if and
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only if, or iff or ⇐⇒ for short. For example, we might write “Suppose f : X → R is a
strictly concave and differentiable function. Then [x∗ maximises f ] if and only if f ′(x∗) = 0.”

Sometimes, only a weaker statement of the converse is true; this is called a partial con-
verse. For example the converse of “if x > y then x 6= y” is “if x 6= y then x > y”, which is
obviously false. However, a partial converse, “if x 6= y then either x > y or x < y” is true.

The negation of a statement X is true whenever X is false; for example the negation of
x 6= y is x = y. The negation of X can also be written as “not X” or “¬X”. Note that negation
is not the same as the converse.

The contrapositive of a statement gives another way of writing the same thing. For
example, the contrapositive of “Suppose the building is on fire. If someone pressed the alarm,
then the fire brigade came” is “Suppose the building is on fire. If the fire brigade did not come,
then nobody pressed the alarm.” More formally, the contrapositive of “X implies Y” is “not Y
implies not X”.

B.5 Quantifiers
It is not possible to say if a statement such as “x is an even number” is true or false: it depends
on what x is. On the other hand, the statement “if x = 2 then x is an even number” is true
and “if x = 3 then x is an even number” false. These two statements are fully qualified, i.e.
it is possible to determine whether they are true or false without any extra information.

Instead of focusing on a particular number (or set), statements can be made general about
many possibilities. For instance, consider the statement, “cos2 x + sin2 x = 1 for all x ∈ R.”
This means that the equation is true as long as we pick an x from the set R. Instead of writing
“for all”, it is also common to write for any or for every. We use these terms interchangeably.

Another possibility would have been to say that the equation is true for at least one element
of R, which is abbreviated to “there exists x ∈ R.” For example, the statement “there exists
x ∈ R such that sin x = 1” is true, but “sinx = 1 for all x ∈ Z” is false. Instead of writing
“there exists”, it is also common to write for some or there is or there is some. Again, we
use these terms interchangeably.

“There exists” and “for all” are called quantifiers. The order of quantifiers matters. For
example, compare the following to sentences:

(i) For all criminals c, there exists a punishment p such that the criminal c would be deterred
from committing crimes.

(ii) There exists a punishment p such that all criminals c would be deterred from committing
crimes.

The second sentence is stronger than the first. In the first sentence, there are many punishments
– each criminal is threatened with a different punishment. In the second sentence, only a single
punishment is discussed that applies to all criminals.
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“There exists an x ∈ X” and “for all x ∈ X” have a short-hand forms ∃x ∈ X and
∀x ∈ X, respectively, that are rarely used in published economics writing, but are often used
in scratch-work.
Question B.13. ✓ Formulate the negations of the following statements:

(i) For all x > 0,
√
x > 0.

(ii) All equilibria are efficient.

(iii) All punishments fit the crime.

(iv) There is no such thing as a free lunch. (Milton Friedman)

(v) You can fool all of the people some of the time, and some of the people all of the time,
but you can’t fool all of the people all of the time. (Abraham Lincoln)

(vi) Up to 30% off on all items.

Question B.14. ✓ Formulate the converses, the contrapositives, and negations of the following
statements:

(i) Suppose f : R → R is a continuous function. For all x and y, if x > y then f(x) > f(y).
(Note: this statement is false. Counter-example: f(x) = 0.)

(ii) Let u : R → R+ be a utility function. If u is unbounded, then for all x ∈ R, there exists
some y ∈ R such that u(y) > u(x).

(iii) If the number of men equals the number of women, then there exists a stable match in
which everyone gets married. Note: I haven’t defined what stable match means, so it is
impossible to say if it is true or false. But with the extra details added in, something
like this statement is true, and it follows from the Gale and Shapley (1962) theorem.

Please formulate negations of the main sentence, not the “background” sentence. For
example, in (i), do not include the continuity condition in the negation.

B.6 Theorems and Proofs
If a statement has a proof – i.e. a logical argument verifying that the statement is true, then
the statement is called a theorem. If a theorem is mostly useful in order to prove something
else that is more important, then we usually call it a lemma. If a theorem is an obvious
consequence of another theorem, then we usually call it a corollary.

Writing proofs is an art. It is a creative process, which means that you can be “inspired”,
i.e. clever ideas might come into your mind without you understanding how you managed



94 APPENDIX B. NAIVE SET THEORY

to discover them. Creativity is not something you can control directly. But you can nurture
it by practice. Just like you can improve your writing by writing lots of essays or stories,
you can improve your proofs by practice. Second, creativity involves your subconscious mind
discovering unexpected connections between seemingly unrelated concepts. So it is essential
that the raw material – the definitions, theorems, and props (such as pictures) that go with
them – are all stored in your mind.

Even though the process of discovering new proofs is an art, but it usually boils down to
transforming an unfamiliar (complicated-looking, difficult) problem into a familiar (solvable,
understandable) problem. For example, one common manoeuvre in proofs is to study the
contrapositive of the statement. We used this strategy to prove Theorem C.11 which establishes
that two different ways of thinking about continuous functions are in fact equivalent.

Another proof strategy is proof by contradiction. To prove X is true using this strategy,
you prove the negation ofX implies a false statement, ⊥. This works because the contrapositive
of “not X implies false” is “true implies X”. This proof strategy is almost always the same as
the previous strategy – proving that the contrapositive statement is true. Some philosophers
and some especially paranoid mathematicians try to discern the precise difference between the
two, and worry about whether proof by contradiction really is valid.3

Another proof strategy is to apply another theorem. Logicians call this approach modus
ponens. For example, the proof of the Second Welfare Theorem (Theorem 5.8, which estab-
lishes that all efficient allocations can be implemented via a corresponding tax policy) is based
on the Existence Theorem (Theorem 5.5, which establishes that an equilibrium exists). To
apply another theorem, it is important to prove that all of the premises of that theorem are
true.

Another proof strategy is to provide a counterexample. This is a limited strategy, because
it only serves to prove a narrow point, i.e. that a hypothesis is wrong. For example, the
statement “It is false that in every pure-exchange economy, there exists is an equilibrium” is
proved by the counterexample depicted in Figure 5.5.

Another common proof step is to “make an assumption without loss of generality.” For
example, Walras law (Theorem 5.2) says that if there are n markets, and n− 1 markets clear,
then all n markets clear. The first step in the proof is “assume without loss of generality that
markets 1, · · · , n − 1 clear.” What this means is that if we can write the proof with the help
of this assumption, then it’s very easy to drop the assumption and complete the proof. In this
case, we could accommodate any market k not clearing by swapping market 1 with market k.

Reading a (well-written) proof is easier than writing one. So how can you get started
writing a proof? The art of writing proofs well takes years to develop, but we can comment
about how to get started. In many ways, writing a proof is like writing an essay. An essay
question might ask “Do you agree that the British Empire was a force for good?” A proof
question might ask “Prove that if the maximum of a set A exists, it equals its supremum.” An
essay usually begins with definitions, such as what the British Empire was, and what criteria

3See for example the Brouwer-Hilbert controversy.
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you propose to use to judge whether it was a force for good. Similarly, a direct proof begins
by explaining the relevant aspects of the definitions in the context, such as “Let x∗ be the
maximum of A, which means that x∗ ∈ A and x∗ ≥ x for all x ∈ A” and “We would like
to prove that x∗ is the supremum of A, which means that x∗ ≥ x for all x ∈ A and that no
other x′ smaller than x∗ has this property.” The rest of the essay would then present logic
and evidence that the claim is true, e.g. that the East India company employed many slaves,
and that slavery is a force for evil, and therefore the East India company was a force for evil.
Many parts of the essay might be devoted to establishing several supporting en route, e.g.
why slavery is a force for evil. Similarly, a proof is often broken up into steps that establish
supporting statements. The main difference between an essay and a proof is that a proof is
entirely theoretical, whereas essays may draw on empirical evidence.

Another approach, called an indirect proof, is to use an “if and only if” theorem to
reformulate the problem. This contrasts with a direct proof, that works directly with the
original definitions. For example, we defined closed sets in terms of sequences, but there are
“if and only if” theorems that allow us to think in terms of other concepts, such as boundaries
and open sets. A direct proof about a closed set would talk about sequences, whereas an
indirect proof might talk about boundaries or open sets. But how should you decide whether
to do a direct or an indirect proof? And if you do choose to do an indirect proof, which “if and
only if” theorem should you use, e.g. boundaries or open sets? Sometimes, there is something
about the problem that suggests the right approach. For example, if one of the conditions is
about closed sets, and the conclusion you want to prove is about boundaries, then it makes
sense to reformulate the assumption in terms of boundaries (or the conclusion in terms of
closed sets). But in general, this is a creative problem – you just have to start working on it,
by drawing pictures or trying out possible reformulations.

The end of a proof is marked with the symbol “□”, except for proofs by contradiction,
which end with “�”.

B.7 *Inverse Functions
A function f : X → Y is injective if for all x, x′ ∈ X, x 6= x′ implies f(x) 6= f(x′). A function
f : X → Y is surjective if for every y ∈ Y , there exists x ∈ X such that f(x) = y. If a function
is both injective and surjective, then it is bijective. An injective function is sometimes called
one-to-one, although this terminology misleadingly suggests a bijective function and should
be avoided. A surjective function is sometimes called onto, although better terminology would
be to say “f maps onto all of Y .” Given a function f : X → Y , the inverse of f is the function
f−1 : Y → X that satisfies the property that for all (x, y) ∈ X × Y : f(x) = y if and only if
f−1(y) = x. A function that has an inverse is called invertible.

Theorem B.1. If f : X → Y has inverse f−1, then f−1(f(x)) = x for all x ∈ X and f(f−1(y)) =
y for all y ∈ Y .
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Proof. Let y = f(x). Applying f−1 to both sides gives f−1(y) = f−1(f(x)). By the definition
of inverse, we have f−1(y) = x. This leads to the conclusion that x = f−1(f(x)).

A similar argument establishes that y = f(f−1(y)).

Theorem B.2. A function f : X → Y is invertible if and only if f is bijective. The inverse
function is unique if it exists.

Proof. If f has an inverse, f−1, then

• f is injective. Select any x, x′ ∈ X such that x 6= x′, and let y = f(x) and y′ = f(x′). We
need to show y 6= y′. By the definition of inverse, we have f−1(y) = x and f−1(y′) = x′.
Since f−1(y) = x 6= x′ = f−1(y′), we have y 6= y′.

• f is surjective. Select any y ∈ Y . We need to show there exists some x ∈ X such that
f(x) = y. Let x = f−1(y). By the definition of inverse, we have f(x) = y.

Suppose f is injective and surjective. Fix any y ∈ Y , and define f−1(y) to be the x ∈ X
such that y = f(x). We need to check f−1(y) is well defined: f−1(y) exists because f is
surjective, and is unique because f is injective.

Finally, we show f−1 is unique. Since f−1(y) = x only if y = f(x), and we established f is
injective if it is invertible, it follows that there is only one x such that f−1(y) = x.

Theorem B.3. If f : X → Y is invertible, then f is the inverse of f−1.

Proof. Just interchange f and f−1 in the definition of inverse.

B.8 *Cardinality
How big is a set? Are there more rational numbers than natural numbers? We already
discussed one way to compare sets, with the subset (⊆) operation. However, ⊆ compares
the contents of a set, not the size; for example, it is useless for comparing {1, 2} and {3, 4}.
Another approach is just to count the number items in the set; but this does not help for
infinite sets. One approach, developed by Georg Cantor, is to say that Y has a greater or
equal cardinality than X if there is a surjective function f : Y → X. If X has a greater or
equal cardinality than Y , we write |X| ≥ |Y |. If |X| ≥ |Y | and |Y | ≥ |X|, then X and Y have
the same cardinality, i.e. |X| = |Y |.
Theorem B.4. X and Y have the same cardinality if and only if there is some bijective function
f : X → Y .
If X is a finite set (i.e. it has a finite number of items in it), then |X| is defined to be the
number of items inside X, e.g. | {1, 5} | = 2. If |X| ≤ |N|, then we say that X is countable.
If X is countable and infinite, then we say that X is countably infinite. If |X| > |N|, then
we say that X is uncountable or uncountably infinite.

Cantor discovered that Q is countable but R is uncountable, via the following theorems:
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Theorem B.5. If X and Y are countable sets, then X × Y is a countable set.

Proof. Since X and Y are countable, there are exists two surjective functions f : N → X and
g : N → Y . We just need to construct a surjective function h : N → X × Y . Informally, define
h as follows:

h(0) = (f(0), g(0))

h(1) = (f(1), g(0))

h(2) = (f(0), g(1))

h(3) = (f(2), g(0))

h(4) = (f(1), g(1))

h(5) = (f(0), g(2))

h(6) = (f(3), g(0))

...

Corollary B.1. Q is countable.

Proof. Let f : N2 → Q+ be defined as f(q, r) = q
r+1

. By Theorem B.5, Q+ is countable.
Similarly, g : {+,−} × Q+ → Q can be defined as g(+, q) = q and g(−, q) = −q. By
Theorem B.5, Q is countable.
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Appendix C

*Topology

Topology is the branch of mathematics that studies the properties of spaces (i.e. sets) that are
related to “nearness,” but where angles are irrelevant, and even distances might be irrelevant.
Some books focus their attention on the topology of the real numbers; these books describe
themselves as being about “real analysis”. At the other extreme, some books focus their
attention on abstract spaces where distances play no role; these books describe themselves as
being about “general topology”. Our approach lies in the middle; we focus on “metric spaces”.
Real numbers are not enough for economics – we often have to study the nearness of functions,
such as value functions, income distributions and best response functions. On the other hand,
almost all of the spaces that economists use have distances that can be described by real
numbers. Therefore, metric spaces strike a good balance between intuitiveness and generality.

Topology is an important tool in economics for answering the following types of questions:

• Does the capital stock converge to a steady-state level, or does it keep growing without
bound forever?

• Does the income distribution converge to a steady-state level, or does inequality grow
forever?

• Does an optimal choice or optimal policy exist? Is there an optimal strategy that involves
telling the truth?

• Is there an equilibrium? Is there a “good equilibrium”, e.g. without racial discrimination?
Is there a “bad equilibrium”, e.g. with bank runs?

• Is there a value function summarising the consequences of today’s choices on the future?
Are there decreasing marginal returns to making investments, or increasing marginal
costs to making promises?

• Does iterated deletion of dominated strategies (e.g. successively raising the asking price
in a bargaining game) delete everything, or is there an equilibrium left over?

99
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• Can all of the items above be calculated by refining initial guesses? How close is an
approximate solution to the actual solution?

• Is there a middle-path between two extreme policies that achieves some intermediate
outcome? For example, if no punishment leads to a 10% crime rate, and harsh punish-
ment (e.g. 10 years of jail) leads to a 0.01% crime rate, is some intermediate punishment
that achieves a 0.1% crime rate?

There are many books that cover similar topics. Rosenlicht (1968, Chapters 1 and 3) has
the closest coverage to ours, and is well explained and illustrated. De la Fuente (2000, Chapter
2) is also good, and covers a similar selection of ideas. Kolmogorov and Fomin (1970, Chapters
2 and 3) and Dudley (2002, Chapter 2) are pitched at a more advanced level. The latter is a
great book to stretch your mind. While Willard (1970, Section 1.2) covers metric spaces, its
main focus is on the more abstract view of general topology. On the other extreme, Rudin
(1976, Chapters 2 and 3) and Simon and Blume (1994, Chapters 12 and 29) introduce real
analysis at a more basic level without discussing metric spaces. Other books about metric
spaces that we have not looked at carefully include Sutherland (1975), Kaplansky (1977),
Haaser and Sullivan (1991), and Carothers (2000).

C.1 Metric Spaces
While it is possible to think about the distance between two points x, y ∈ Rn by calculating√√√√ n∑

i=1

(xi − yi)2,

this is not the only way to think about distance. For instance, x and y might instead be
infinite consumption plans in an economy that has no final date. Or x and y might be two
value functions – is there a way to think about how “distant” these two functions are from
each other? Rather than dwell on the details of how to calculate distances, Fréchet (1906)
proposed simultaneously studying all possible spaces (of functions, sequences, points, etc.)
with all possible ways of measuring distances. That is, he proposed studying what all spaces
with distances have in common with each other. An obvious reason this is useful is that it
allowed him to develop a single theory that would be useful for studying many seemingly
unrelated problems. Perhaps a more important reason is that his theory allows us to develop
an instinct for complicated spaces (such as spaces of value functions) by focusing on what these
spaces have in common with simpler spaces (like R2). To begin, Fréchet (1906) defined what
he meant by a space with a distance:
Definition C.1. (X, d) is metric space if X is a set and the distance function (or metric)
d : X ×X → R+ satisfies the following properties:
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(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X, and

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X, which is called the triangle inequality.

The most important part of the definition is the triangle inequality, which is illustrated in
Figure C.1a. The triangle inequality says that there are no “short-cuts” – the distance from
x to z is not larger than any indirect route via some other point y. The theory of metric
spaces explores spaces that are like Euclidean spaces in the sense that the triangle inequality
is satisfied, but might be different in many other ways.

d(x, y)

d(y, z)

d(x, z)

x

y

z

(a) The triangle inequality: d(x, z) ≤ d(x, y) +
d(y, z)

f

g

d∞(f, g)

(b) The sup (d∞) metric

Examples of metric spaces include:

• (Rn, d1) where d1(x, y) =
∑n

i=1 |xi − yi| is the “city grid” or “Manhattan” metric.

• (Rn, d2) where d2(x, y) =
√∑n

i=1(xi − yi)2 is the Euclidean metric.

• If (X, d) is a metric space, and Y ⊆ X, then (Y, dY ) is also a metric space, where

dY (x, y) = d(x, y) for all x, y ∈ Y .

(Y, dY ) is a metric subspace of (X, d). We usually abuse notation by writing (Y, d)
instead of (Y, dY ).

• (Rn, d∞) where d∞(x, y) = maxi |xi − yi|, which is short-hand for

d∞(x, y) = max {|x1 − y1| , |x2 − y2| , · · · , |xn − yn|} .

• (X, d) where X is any set and d(x, y) = 1 if x 6= y, and 0 otherwise. This is called the
discrete metric.
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• Functions spaces, e.g. (X, d∞) is a metric space ifX = {f : [0, 1] → [0, 1]} and d∞(f, g) =
supx∈[0,1] |f(x)− g(x)| is called the sup metric or the uniform metric, and is depicted
in Figure C.1b. This is defined in terms of the supremum operation, which is a gen-
eralisation of the maximum operation that accommodates sets like [0, 1). Specifically, if
A ⊆ R, then supA = min {s ∈ R ∪ {∞} : a ≤ s for all a ∈ A}.

• Bounded real sequences. Let ℓ∞ = {xn : each xn ∈ R, and there is some r > 0 s.t. all |xn| < r} ,
and d∞(xn, yn) = supn |xn − yn|. Then (ℓ∞, d∞) is a metric space. This space is com-
monly used in macroeconomics to capture consumption, investment, capital, etc. when
time never ends.

• Bounded sequences. More generally, consider a metric space (X, d) instead of the real
line. Let ℓ∞ = {xn : each xn ∈ X, and there is some r > 0 s.t. all d(xn, x0) < r} , and
d∞(xn, yn) = supn d(xn, yn). Then (ℓ∞, d∞) is a metric space. These spaces are also used
in macroeconomics to capture more complicated sequences of choices.

• Any vector space X with the metric d(x, y) =
√

(x− y) · (x− y).

• Let (X, dX) and (Y, dY ) be metric spaces and let Z = X × Y . Then (Z, dZ) is a metric
space if dZ is either:

(i) dZ(x, y; x
′, y′) = dX(x, x

′) + dY (y, y
′).

(ii) dZ(x, y; x
′, y′) = max {dX(x, x′), dY (y, y

′)}.
(iii) dZ(x, y; x

′, y′) =
√
dX(x, x′)2 + dY (y, y′)2.

• Function spaces (again). Let (X, dX) and (Y, dY ) be metric spaces. Then (B(X,Y ), d∞)
is the space of bounded functions, where

B(X,Y ) = {f : X → Y, there is some r > 0 s.t. for all x, x′ ∈ X, dY (f(x), f(x′)) < r}

and
d∞(f, g) = sup

x∈X
dY (f(x), g(x)).

Note that it is necessary to restrict attention to bounded functions – otherwise, d∞(f, g)
might be infinite, which violates the definition of metric space. We also use the short-
hand B(X) = B(X,R), where distances in R are measured with the Euclidean metric
d2. Note that since sequences are functions whose domain is N, sequence spaces are a
special case of function spaces, e.g. ℓ∞ = B(N,R).

• Function spaces (again). Consider any space of bounded functions, B(X,Y ). Then
the space of continuous and bounded functions, (CB(X,Y ), d∞) is a metric space,
where CB(X,Y ) = {f ∈ B(X,Y ) : f is continuous}. Note: we have not yet defined
what a continuous function is.
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One common point of confusion is what X refers to in sequence spaces like ℓ∞(X) and
function spaces like B(X). Since the domain of a sequence is always N, we omit this by
writing ℓ∞(X) instead of ℓ∞(N, X). On the other hand, it is very common to study function
spaces whose co-domain is R, so we usually omit this too, i.e. write B(X) instead of B(X,R).
In other words, the X in ℓ∞(X) refers to the co-domain, whereas the X in B(X) refers to the
domain.

Examples of spaces that are not metric spaces:

• (Rn, d) where d(x, y) = mini |xi − yi|. This violates the triangle inequality, and also the
first requirement.

• (Rn, d) where d(x, y) = 0 for all x, y ∈ X. This violates the first requirement.

Question C.1. ✓ Is (B[0, 1], d) a metric space, where

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx?

Question C.2. ✓ Suppose that (X, d) is a metric space. Let d′(x, y) = min {1, d(x, y)}. Prove
that (X, d′) is also a metric space.
Question C.3. ✓ Suppose that (X, d) is a metric space. Let d′(x, y) = d(x, y)/(1 + d(x, y)).
Prove that (X, d′) is also a metric space. Hint: (a+b)/(1+a+b) = a/(1+a+b)+b/(1+a+b) ≤
a/(1 + a) + b/(1 + b) for all a, b ≥ 0.
Question C.4. ✓ Devise and prove a generalisation of the last two questions.
For more similar questions, see the following practice exam questions: 29.b.iii.

C.2 Convergence
Here, we define what it means for a sequence x0, x1, · · · to converge to a point x∗. For example,
the capital stock of an economy might eventually converge to a steady-state level as opposed
to diverging to ∞ or oscillating in cycles. Convergence is also important for understanding
approximations; if we have a procedure for refining or obtaining higher quality approximations
of a variable of interest x∗, then we would like to know whether the approximations converge
to x∗, and we would like a way to evaluate how close each approximation is.
Definition C.2. A sequence in the set X is any function with domain N and co-domain X.
Sequences are often denoted as x0, x1, · · · , or {xn}∞n=0 or just xn. By convention, xn and xm

refer to the same sequence (possibly referring to different parts of the sequence), whereas xn,
x′
n and yn all refer to different sequences.

Examples:

• xn = 1
n
is a sequence inside the set R.
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• xn = I(n is a prime number) is a sequence inside the set {0, 1}.

• fn(x) = nx is a sequence of functions.

Definition C.3. The open ball centred at x with radius r > 0 in the metric space (X, d) is
Br(x) = {y ∈ X : d(x, y) < r}.
Examples:

• Inside the metric space (R, d2), B1(0) = (−1, 1).

• Inside the metric space (R2, d2), B1(0) is the interior of the circle of radius 1, not including
the edge.

• Inside the metric space (R+, d2), B1(0) = [0, 1).

• Inside the metric space (R++, d2), B1(0) is not well-defined, since 0 is not inside the
space.

• Inside the metric space ([−1, 0] ∪ [1, 2], d2), B2(0) = [−1, 0] ∪ [1, 2).

Definition C.4. Suppose xn is a sequence in a metric space (X, d). We say that xn converges
to x∗ ∈ X (or write xn → x∗) if for every r ∈ R++, there exists an N ∈ N such that

d(xn, x
∗) < r for every n ≥ N .

x∗ is called the limit of xn.
It is often convenient to think of convergence in terms of open balls. We can write “xn ∈
Br(x

∗)” in place of “d(xn, x
∗) < r”.

r

x1

x2

x3

x∗

Figure C.2: A convergent sequence, xn → x∗

in (R2, d2)

x1

x2

x3

x4

Figure C.3: A non-convergent sequence, xn in
(R2, d2)

Figure C.2 depicts a convergent sequence, and Figure C.3 depicts a non-convergent se-
quence. Other examples include:

• The sequence xk = 1/k in (R, d2) converges to 0.

• The sequence xk = 1/k in (R, d) does not converge to anything if d is the discrete metric.
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f1

f2

Figure C.4: A convergent sequence, fk → f∗

in (B[0, 1], d∞)

• The sequence xk = 1/k in (R++, d2) does not converge to anything.

• Consider the sequence fk(x) = x/k2 inside the metric space (B[0, 1], d∞), depicted in
Figure C.4. Then fk → f ∗ where f ∗(x) = 0.

Definition C.5. Let xn be a sequence in a metric space (X, d). We say that xn is a bounded
sequence if there is an r > 0 such that d(x0, xn) < r for all n. Otherwise, we say that xn is
an unbounded sequence.
Examples:

• Inside the metric space (R, d2), xn = 1
n
is a bounded sequence, because it lies inside the

ball B2(0).

• Inside the metric space (R, d2), xn = cosnπ is a bounded sequence because it lies inside
the ball B2(0).

• Inside the metric space (R, d2), xn = n is an unbounded sequence, because for no radius
r > 0 does the whole sequence lie inside Br(0). (In particular, x⌈1/r⌉ is outside.)

• Inside the metric space (R, d) where d is the discrete metric, xn = n is a bounded
sequence. This is because B0(2) is the whole line, as all distances are at most 1.

Theorem C.1. Let xn be a sequence in a metric space (X, d). If xn is an unbounded sequence,
then xn does not converge.
Question C.5. ✓ Prove Theorem C.1.
Theorem C.2. A sequence xn in (X, d) can converge to at most one point in X.

Proof. Suppose for the sake of contradiction that xn → x∗ and xn → y∗ and that x∗ 6= y∗.
The idea of the proof is that since xn converges to x∗ and y∗, there is some xN that is

very close to both x∗ and y∗. This would create a “short-cut” from x∗ to y∗, with d(x∗, xN) +
d(xN , y

∗) < d(x∗, y∗). But metric spaces are not allowed to have short-cuts.
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Let r = d(x∗, y∗)/2. Since xn → x∗ and xn → y∗, there is some N such that d(xn, x
∗) < r

and d(xn, y
∗) < r when n ≥ N . We conclude that

d(x∗, y∗) = r + r > d(x∗, xN) + d(xN , y
∗).

This contradicts the triangle inequality, d(x∗, y∗) ≤ d(x∗, xN) + d(xN , y
∗).

Sequences are infinite, and convergence is only about what happens at the distant end of the
sequence.
Definition C.6. We say that yn is a subsequence of xn if there exists a strictly increasing
sequence kn ∈ N (i.e. with kn+1 > kn for all n) such that yn = xkn .
Examples:

• yn = 2n is a subsequence of xn = n, where kn = 2n and yn = xkn .

• yn = 10 is not a subsequence of xn = n.

• yn = 10 is a subsequence of

xn =

{
10 if n is even,
n if n is odd,

e.g. by setting kn = 2n and noticing that yn = xkn .

Theorem C.3. If xn → x∗ and yn is a subsequence of xn, then yn → x∗.

Proof. The condition xn → x∗ means that for every r > 0, there exists an N ∈ N such that
d(xn, x

∗) < r for all n ≥ N . Since yn = xkn for some sequence kn with kn ≥ n, it follows that
d(yn, x

∗) = d(xkn , x
∗) < r for all n ≥ N .

Theorem C.4. Consider the metric space (R, d2). If xn → x∗ and yn → y∗, then

(i) xnyn → x∗y∗,

(ii) xn + yn → x∗ + y∗, and

(iii) if xn 6= 0 and x∗ 6= 0 then 1
xn

→ 1
x∗ .

The definition of convergent sequences is about whether a sequence gets closer and closer to
a particular point. But what if the points in a sequence get closer and closer to each other?
Are such sequences convergent, and vice versa?
Definition C.7. Let (X, d) be a metric space. A sequence xn ∈ X is called a Cauchy sequence
if for every radius r > 0, there exists a number N such that for all n,m > N ,

d(xn, xm) < r.
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For example,

• The sequence xn = 1
n
inside ([0, 1], d2) is a Cauchy sequence. We will prove this below

by establishing that convergent sequences are Cauchy sequences.

• The same sequence xn = 1
n
inside the smaller space ((0, 1], d2) is a Cauchy sequence,

even though it is not convergent. Since xn is a Cauchy sequence inside the bigger space
([0, 1], d2), it satisfies the relevant Cauchy condition that the points get closer and closer
to each other.

The following theorem says that if a sequence converges, then the points in the sequence
get closer and closer to each other (according to Cauchy).
Theorem C.5. Let (X, d) be any metric space. If xn ∈ X is a convergent sequence, then xn is
a Cauchy sequence.

Proof. Suppose xn → x∗. Fix any radius r > 0. By the definition of convergence, there
is some N such that for all n > N , d(xn, x

∗) < r
2
. By the triangle inequality, d(xn, xm) ≤

d(xn, x
∗) + d(x∗, xm) <

r
2
+ r

2
= r for any n,m > N . Therefore, xn is a Cauchy sequence.

The following theorem says that if the points in a sequence get closer and closer together, then
the whole sequence fits inside an open ball. The theorem generalises Theorem C.1.
Theorem C.6. Let (X, d) be any metric space. If xn ∈ X is a Cauchy sequence, then xn is
bounded.

Proof. Since xn is a Cauchy sequence, there is some N such that for all n,m ≥ N , d(xn, xm) <
1. In particular, d(xN , xn) < 1 for all n ≥ N . But what about n < N? Let r1 = 1 +
max

{
d(x1, xN), d(x2, xN), · · · , d(xN−1, xN)

}
, and let r = max {r1, 1}. Then the entire sequence

lies inside Br(xN).

The following theorem says that if a sequence “wants to converge”, then its subsequence “want”
to converge as well.
Theorem C.7. Let (X, d) be any metric space. If xn ∈ X is a Cauchy sequence, and yn is a
subsequence of xn, then yn is a Cauchy sequence.
Question C.6. ✓ Find the limits of the following sequences in (R, d2), or prove that the limits
do not exist.

(i) xn =
√
n.

(ii) xn = 1
n
.

(iii) xn = n
n+1

.

(iv) xn =
√
n
n
.
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(v) xn = cos πn.

Question C.7. ✓ Find the limits of the following sequences in (B[0, 1], d∞), or prove that the
limits do not exist.

(i) fn(x) = 1.

(ii) fn(x) = x.

(iii) fn(x) = n.

(iv) fn(x) = nx.

(v) fn(x) =
1
n
.

(vi) fn(x) =
x
n
.

(vii) fn(x) =
n

n+1
x.

(viii) fn(x) = sinnx.

(ix) fn(x) =
1
n
cos πnx.

Question C.8. ✓ (Hard.) Prove that every sequence xn ∈ R has a monotone (i.e. weakly
increasing or decreasing) subsequence.
Question C.9. ✓ Prove Theorem C.3.
Question C.10. ✓ Let (X, d) be any metric space, let xn be a sequence in X, and let x∗ ∈ X.
Prove that if d(xn, x

∗) → 0, then xn → x∗.
Question C.11. ✓ A household starts with no assets a0 = 0, receives wages w = 20 every year,
and has c̄ = 10 if non-discretionary consumption. Suppose that if the household has assets
at in year t, they choose their next year’s assets according to at+1 =

4
5
(w + at − c̄). Does the

household’s assets at converge to a steady state?
Question C.12. ✓ Suppose xn and yn are sequences inside the metric space (X, d). Prove that
if d(xn, yn) → 0 and xn → x∗, then yn → x∗.
Question C.13. ✓ Gauss’ Squeeze Theorem. Prove that if xn ≤ yn ≤ zn and xn → a and
zn → a then yn → a.

C.3 Boundaries
We now study the boundaries of sets inside metric spaces. Boundaries are important for several
reasons:
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• Many important ideas only make sense away from boundaries. For example, first-order
conditions such as marginal benefit equals marginal cost are based on the idea of being
able to both increase and decrease a choice a little bit, which is only possible away from
a boundary.

• Optimal choices represent the boundary of possible utilities and profits. Therefore opti-
mal choices often occur on the boundaries of the feasible options, such as the boundary
of the set of affordable consumption bundles.

Intuitively, the boundary of a set is near points both inside and outside of the set. More
precisely, the boundary of a set is defined as follows.
Definition C.8. Let A be any subset of a metric space (X, d). A point x ∈ X is a boundary
point of A if

(i) there exists a sequence an ∈ A such that an → x, and

(ii) there exists a sequence bn ∈ X\A such that bn → x.

The set of boundary points of A is called the boundary of A, and is denoted ∂A.

a1

a2a3

b1

b2
b3

x

(a) A boundary point

Figure C.5a depicts a boundary point. Other examples of boundaries include:

• The boundary of [0, 1] in (R, d2) is {0, 1}.

• The boundary of (0, 1) in (R, d2) is {0, 1}.

• The boundary of [0, 1] in ([0, 1], d2) is ∅.

• The boundary of (0, 1) in ([0, 1], d2) is {0, 1}.

• The boundary of [0, 1] in (R+, d2) is {1}.

• The boundary of (0, 1) in (R+, d2) is {0, 1}.

To understand boundaries better, the following sections explore relationships to boundaries,
including being inside a boundary and being away from a boundary.
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Question C.14. ✓ Consider any price vector p ∈ RN
++. What is the boundary of the budget

constraint, A =
{
x ∈ RN

+ : p · x ≤ m
}
inside the metric space (RN

+ , d2)? Note: x is a consump-
tion bundle, p is the vector of prices, m is the household’s wealth, and A is the set of affordable
consumption bundles.
Question C.15. ✓ (Very hard) Let A = {f : [0, 1] → R−−, f is bounded}. What is the bound-
ary of A inside the metric space (B[0, 1], d∞)?

Hint: start by answering the question for functions whose domain is a single point, e.g.
{0}. Then two points, e.g. {0, 1}.
Question C.16. ✓ Let (X, d) be any metric space where d is the discrete metric. Pick any set
A ⊆ X. What is the boundary of A?
For more similar questions, see the following practice exam questions: 24.b.i, 31.b.ii, 31.b.iii.

C.4 Closed Sets
Suppose a decision maker has a menu of M choices, and xn → x∗ is a convergent sequence of
almost optimal choices, each better than the previous one. Is x∗ on the menu? If not, then
there might not be any optimal choice, which suggests that the decision-maker’s problem has
not been described accurately. To rule this problem out, we could assume that the menu M
is closed, i.e. that it is impossible to escape from M by taking a limit. (This is analogous to
– but of course completely different from – the idea of convexity, which is about escaping by
drawing a line.) We will show that a set is closed if and only if it contains its boundary.
Definition C.9. Suppose A is a subset of a metric space (X, d). We say A is closed if there is
no sequence an ∈ A such that an → a∗ and a∗ 6∈ A.
For example,

• [0, 1] is a closed set in (R, d2).

• If (X, d) is any metric space, then X and ∅ are closed sets in (X, d).

• (0, 1) is a closed set in ((0, 1), d2), but not in (R, d2).
Theorem C.8. Suppose A is a subset of a metric space (X, d). Then A is closed if and only if
A contains its boundary, i.e. ∂A ⊆ A.

Proof. First, we show that if A is closed, then A contains its boundary. To see this, note that
if x ∈ ∂A, then from the first part of the definition of boundary, there exists some sequence
an ∈ A such that an → x. Since A is closed, we deduce that x ∈ A.

Second, we show that if A contains its boundary, then A is closed. Specifically, we want
to prove that if A contains its boundary, and an ∈ A converges to x, then x ∈ A. Assume for
the sake of contradiction that x 6∈ A. Then the sequence bn = x satisfies the properties that
bn 6∈ A and bn → x. These two sequences an and bn satisfy the definition that x is a boundary
point of A. Since A contains its boundary, we conclude x ∈ A, violating the assumption.
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Definition C.10. Let A be a set inside a metric space (X, d). The closure of A is

cl(A) = {x∗ ∈ X : there is a sequence xn ∈ A with xn → x∗} .

Question C.17. ✓ Let (X, d) be any metric space. Prove that for any A ⊆ X, the set cl(A)
is closed.
Question C.18. ✓ Let (X, d) be any metric space. Prove that for any set A ⊆ X, that
cl(A) = A ∪ ∂A.
Question C.19. ✓ Let (X, d) be any metric space. Prove that if A ⊆ X is a finite set, then A
is closed.
Question C.20. ✓ Prove that if A and B are closed sets inside the metric space (X, d), then
A ∪B is a closed set.
Question C.21. ✓ Provide a counter-example to the following hypothesis: the union of a
collection of closed sets is closed.
Question C.22. ✓ Prove that if A is a set of closed sets inside the metric space (X, d), then
B = ∩A∈AA is also a closed set.
Question C.23. ✓ Let (X, d) be a metric space. Let C be the set of closed sets containing A.
Let Ĉ = ∩C∈CC. Prove that

cl(A) = Ĉ.

Question C.24. ✓ Let (X, d) be any metric space and A ⊆ X. Prove that ∂A = cl(A)∩cl(X\A).
Question C.25. ✓ Consider the sequences an and bn inside metric space (R, d2). Prove that if
an ≤ bn and an → a∗ and bn → b∗ then a∗ ≤ b∗.
For more similar questions, see the following practice exam questions: 17.vii, 21.b.i, 31.b.i.

C.5 Open Sets
Sometimes it is important to focus attention on points that are away from the boundary of
a set. For example, first-order conditions require thinking about choices that can be both
increase or decreased – see for example Theorem E.2 and Theorem E.3.

Intuitively speaking, a set is open if every point inside it is distant from all points lying
outside of the set. We will later say that open sets do not contain any of their boundaries.
The usual way to formalise the idea of open sets is in terms of open balls.
Definition C.11. Suppose A is a subset of a metric space (X, d). We say a point x ∈ A is
an interior point if there is an open ball Br(x) such that Br(x) ⊆ A. The set of interior
points of a set A is called the interior of A, and is denoted int(A). We say A is an open
set if it equals its interior. If A is an open set, and x ∈ A, then we say that A is an open
neighbourhood of x.
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x

Figure C.6: A set is open if every element x
is contained inside a ball inside the set

The definition of an open set is illustrated in Figure C.6. Examples and non-examples include:

• Any open ball Br(x) is an open set in (X, d), where x ∈ X. To see this, pick any
y ∈ Br(x), and let s = r − d(x, y). We want to show that Bs(y) ⊆ Br(x), which implies
that x is an interior point of Br(x). Pick any z ∈ Bs(y), i.e. d(y, z) < s. By the triangle
inequality, d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r. We conclude that z ∈ Br(x).
where.

• (0, 1) is an open set in (R, d2). This is a special case of the previous example.

• If (X, d) is any metric space, then X and ∅ are open sets in (X, d). X is open because
every open ball is contained in X. ∅ is open because there are no points to check whether
they are interior points or not.

• [0, 1] is an open set in ([0, 1], d2). This is a special case of the previous example.

• [0, 1] isnot open in (R, d2). 1 is not an interior point because every ball Br(1) contains a
point outside of [0, 1], e.g. 1 + r/2.

Theorem C.9. Let A be a subset of a metric space (X, d). Then A is open if and only if A does
not contain any of its boundary, i.e. A ∩ ∂A = ∅.

Proof. First, we show that if A is open, it does not contain any of its boundary. Consider any
point x ∈ A. Since A is open, there is some open ball Br(x) such that Br(x) ⊆ A. That is,
every point in X with distance less than r from x is inside A. Therefore no sequence bn lying
outside of A can converge to x. So x 6∈ ∂A. We conclude that A ∩ ∂A = ∅.

Second, suppose that A is not open. This means that there is some point, x ∈ A such that
every open ball Br(x) is not a subset of A. We will show x ∈ ∂A and hence x ∈ A ∩ ∂A.
Consider the sequence of balls with radius rn = 1/n. For each radius rn, we have established
there is a point bn ∈ Brn(x) such that bn ∈ X\A. This means bn → x. Second the trivial
sequence an = x ∈ A converges with an → x. Therefore, x is a boundary point of A, as
required.
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This means that open and closed sets are opposite concepts. A closed set contains all of its
boundary, whereas an open set contains none of its boundary. If a set contains some but not
all of its boundary, then it is neither open nor closed. On the other hand, a set is both open
and closed iff the set has no boundary at all. Examples of sets that are both open and closed
include:

• ∅ and X inside any metric space (X, d).

• [0, 1] inside the metric space ([0, 1] ∪ [2, 3], d2).

Another way open and closed sets are opposite arises when taking complements:
Theorem C.10. Let A be any subset of a metric space (X, d). Then A is an open set if and
only if X\A is a closed set.

Proof. The key observation is the symmetry inside the definition of boundary: that ∂A =
∂(X\A).

If A is open, then it does not contain any of its boundary ∂A. In this case, X\A does
contain its boundary, ∂A, and is therefore closed.

If X\A is closed, then it contains its boundary, ∂A. In this case, A does not contain any
of its boundary, ∂A, and is therefore open.

Question C.26. ✓ Consider the metric space (X, d) = ([0, 10], d2). What is B2(1)? Is this an
open set in (X, d2)? Is this an open set in (R, d2)?
Question C.27. ✓ Prove that if A and B are open sets inside the metric space (X, d), then
A ∩B is an open set.
Question C.28. ✓ Provide a counter-example to the following hypothesis: the intersection of
a collection of open sets is open. Hint: Consider an infinite number of sets.
Question C.29. ✓ Prove that if A is a set of open sets inside the metric space (X, d), then
U = ∪A∈AA is also an open set.
Question C.30. ✓ Let (X, d) be a metric space. Fix any set A ∈ X. Let I be the set of open
subsets of A, and let U = ∪I∈II. Prove that interior(A) = U.

Question C.31. ✓ Let (X, d) be a metric space, and A ⊆ X. Find a counter-example to the
following false statement: if A is an open set then interior(cl(A)) = A.
Question C.32. ✓ Let U be an open set inside the metric space (X, d). Prove that if x ∈ U ,
then U\ {x} is also an open set.
Question C.33. ✓ Consider a set A ⊆ Rn. Prove that the following three statements are
equivalent:

(i) A is open in (Rn, d1).

(ii) A is open in (Rn, d2).
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(iii) A is open in (Rn, d∞).

For more similar questions, see the following practice exam questions: 19.vii, 27.b.ii, 27.b.iii,
28.vii, 29.b.i, 33.vii, 34.iv.

C.6 Continuity
If xn is a good approximation of x∗, does that mean that f(xn) is a good approximation of
f(x∗)? Similarly, if xn are approximately optimal choices, does that mean that x∗ is optimal?
The key concept for answering these questions is continuity. Intuitively speaking, a function
is continuous if it does not have jumps. By we can formulate this idea in terms of sequences,
open sets or closed sets.

Definition C.12. Consider two metric spaces, (X, dX) and (Y, dY ). We say that a function
f : X → Y is continuous at x∗ ∈ X if for every sequence xn ∈ X converging to xn → x∗,
the corresponding sequence f(xn) ∈ Y converges with f(xn) → f(x∗). We say that f is
continuous if f is continuous at all points x ∈ X.

x

f(x)

x

f(x)

x1

f(x1)

x2

f(x2)

x∗

f(x∗)

Figure C.7: A discontinuous function

For example,

• Figure C.7 depicts a discontinuous function.

• The function

f(x) =

{
1 if x ∈ [0, 1],
0 if x ∈ [2, 3],

is continuous when the domain and co-domain are both using the Euclidean metric,

• Any function is continuous if its domain is using the discrete metric.
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Bertrand competition gives an economic example of a discontinuous function. In the
Bertrand model of competition, if I choose my price to match my competitor’s price, then
we share the market equally, i.e. we both sell the same amount of goods. If I undercut my
competitor – even by just one penny – then all customers would buy from me and none would
buy from my competitor. Thus the quantity sold is a discontinuous function of my price.

Continuity can also be described in terms of open and closed sets. In the following theorem
we use the notation: if f : X → Y and A ⊆ X and B ⊆ Y then we define the image of A and
preimage of B:

f(A) = {f(a) : a ∈ A} (C.1)
f−1(B) = {x ∈ X : f(x) ∈ B} . (C.2)

x

f(x)

B

f−1(B)

x∗

f(x∗)

Figure C.8: f is discontinuous because
f−1(B) is not open when B is open.

Theorem C.11. Let f : X → Y be a function between two metric spaces, (X, dX) and (Y, dY ).
Pick any x∗ ∈ X and let y∗ = f(x∗). Then f is continuous at x∗ if and only if for every open
ball Bs(y

∗), there exists some open ball Br(x
∗) such that f(Br(x

∗)) ⊆ Bs(y
∗).

Proof. It is easier to study the contrapositives of these statements. First, we establish that if f
is open-set continuous, then f is sequentially continuous. The contrapositive of this statement
is that if f fails the sequential continuity, then it also fails open set continuity.

First, suppose that for some sequence xn → x∗, we have yn = f(xn) 6→ y∗. We will find an
open ball Bs(y

∗) such that every open ball has f(Br(x
∗)) 6⊆ Bs(y

∗). Since yn 6→ y∗, there is
some s > 0 such that no tail of yn lies (entirely) inside Bs(y

∗). Since every open ball Br(x
∗)

contains a tail of xn, it follows that for all r > 0 that f(Br(x
∗)) 6⊆ Bs(y

∗).
Conversely, suppose that for some open ball Bs(y

∗), there is no open ball Br(x
∗) such

that f(Br(x
∗)) ⊆ Bs(y

∗). We will construct a sequence xn → x∗ such that f(xn) 6→ y∗. For
every n, there exists some xn ∈ B1/n(x

∗) such that f(xn) 6∈ Bs(y
∗). Therefore, xn → x∗ but

f(xn) 6→ y∗.

Theorem C.12. Let f : X → Y be a function between two metric spaces, (X, dX) and (Y, dY ).
Then f is continuous if and only if f−1(U) is an open set for all open sets U ⊆ Y .
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The theorem is illustrated in Figure C.8.

Proof. Suppose that f is continuous. Let U be any open set in (Y, dY ), and let V = f−1(U).
We need to show that V is an open set in (X, dX). To this end, pick any x ∈ V . It suffices to
show that x is an interior point of V . Let y = f(x). Since U is open and y ∈ U , there is some
open ball Bs(y) ⊆ U . By Theorem C.11, there is some Br(x) such that f(Br(x)) ⊆ Bs(y) ⊆ U .
It follows that Br(x) ⊆ f−1(f(Br(x))) ⊆ f−1(U). We conclude that x is an interior point of
V , as required.

Conversely, suppose that for all open sets U ⊆ Y , the set f−1(U) is open. We will show
that f is continuous at every x ∈ X. Pick any x, let y = f(x), and pick any open ball
U = Bs(y). Since U is an open set in (Y, dY ), we know that f−1(U) is an open set. Therefore,
there is some open ball Br(x) ⊆ f−1(U) which implies f(Br(x)) ⊆ U = Bs(y). This means
that Theorem C.11 applies, so we conclude that f is continuous at x.

Question C.34. ✓ Let f : X → Y be a function between two metric spaces, (X, dX) and
(Y, dY ). Prove that f is continuous if and only if f−1(A) is a closed set for all closed sets
A ⊆ Y . Hint: make use of the fact that A is closed if and only if Y \A is open.
Question C.35. ✓ Consider any price vector p ∈ RN

++. Prove that the set of unaffordable items,
A =

{
x ∈ RN

+ : p · x > m
}

is an open set inside the metric space (RN
+ , d2). Hint: You may

make use of the following fact: the function f : RN
+ → R defined by f(x) = p · x is continuous.

Question C.36. ✓ Suppose f : X → Y is a continuous function from (X, dX) to (Y, dY ).
Let B ⊆ Y and A = f−1(B). Find a counter-example to the following false conjecture:
int(A) = f−1(int(B)).
Question C.37. ✓ Consider any price vector p ∈ RN

++. What is then interior of the budget
constraint, A =

{
x ∈ RN

+ : p · x ≤ m
}
inside the metric space (RN

+ , d2)?
Question C.38. ✓ Consider any price vector p ∈ RN

++. Is the budget constraint, A ={
x ∈ RN

+ : p · x ≤ m
}
a closed set inside the metric space (RN

+ , d2)?
Question C.39. ✓ Suppose that u : RN

+ → R is a continuous utility function using Euclidean
metrics for both the domain and co-domain. Prove that the indifference curves and upper
contour sets of u are closed sets.
Question C.40. ✓ Prove that if f : X → Y is continuous and g : Y → Z is continuous, then
h : X → Z defined by h(x) = g(f(x)) is continuous. (You should prove this for any metric for
each of these three spaces.)
Question C.41. ✓ Let (X, dX) and (Y, dY ) be metric spaces, and consider any function f :
X → Y such that there exists y0 ∈ Y such that for all x ∈ X, f(x) = y0. Prove that f is
continuous.
Question C.42. ✓ Prove that addition is continuous, i.e. that f : R2 → R defined by
f(x, y) = x+ y is continuous, where the domain and co-domain use the Euclidean metric.
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Question C.43. ✓ Let (X, d) be any metric space. Prove that for all x′ ∈ X, the function
f(x) = d(x, x′) is continuous.

Question C.44. ✓ Consider the two metric spaces (X, d1) and (X, d2) that share the same
point set but measure distance in two different ways. Prove that if the function f(x) = x from
(X, d1) to (X, d2) is continuous and f−1 is also continuous, then U is an open set in (X, d1) if
and only if U is an open set in (X, d2).

For more similar questions, see the following practice exam questions: 15.vii, 18.viii, 27.b.iv,
27.b.v, 34.b.vi.

C.7 Completeness

A metric space might have “holes” in it. A Cauchy sequence is a sequence that “wants” to
converge, in the sense that the points in the sequence get very close together. But maybe there
is no point in the space that could be an end-point of convergence. For example, consider the
metric space (X, d) = ((0, 1], d1). The sequence xn = 1/n “wants” to converge to 0. But
0 6∈ X, so xn is not a convergent sequence.

These concerns arise in economics when determining if an optimal solution to an optimi-
sation problem exists, and determining whether an equilibrium exists. Specifically, a solution
would fail to exist if there is a hole where the best choice “ought” to be.

For example, a common difficulty in monetary economics is understanding whether there
is any equilibrium in which money holds any value. In monetary models, it is typically very
easy to establish that there is an equilibrium in which money is worthless. But such equilibria
are unhelpful for studying money. One solution would be to remove the prices that involve
worthless money from the space of potential equilibria. But this creates a hole in the space.
A better approach would be to remove lots of prices in a way that does not leave any holes.

This section defines complete metric spaces, and verifies some important spaces are com-
plete.

Definition C.13. A metric space (X, d) is complete if every Cauchy sequence xn ∈ X is
convergent.

For example:

• (R, d2) is complete – we will sketch a proof below.

• ((0, 1], d1) is not complete, because the Cauchy sequence xn = 1/n does not converge.
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• (Q, d1) is not complete. For example, the sequence of decimal approximations of π,

x1 = 3

x2 = 3.1

x3 = 3.14

x4 = 3.141

...

does not converge to any point in Q.

• (CB([0, 1]), d1), where d1(f, g) =
∫ 1

0
|f(x)− g(x)| dx is not complete. Let fn : [0, 1] → R

be defined by fn(x) = 0.5 + n(x− 0.5) and gn : [0, 1] → [0, 1] defined by

gn(x) = max {0,min {1, fn(x)}}

and let g∗(x) = I(x > 0.5). Notice that gn ∈ CB([0, 1]), but that g∗ 6∈ CB([0, 1]) since
g∗ is discontinuous at 0.5. Now the area between gn and g∗ converges to 0 as n → ∞.
Therefore, gn is a Cauchy sequence. But gn does not converge, because g∗ 6∈ CB([0, 1]).
Therefore, (CB([0, 1]), d1) is not complete.

The following theorem says that if “wants to converge” (according to Cauchy) and there is
a convergent subsequence (meaning there is no relevant “hole” in the space), then the original
sequence converges.
Theorem C.13. Let (X, d) be any metric space. If xn ∈ X is a Cauchy sequence, and yn → y∗

is a convergent subsequence of xn, then xn → y∗.

Proof. Pick any r > 0. Since xn is a Cauchy sequence, there is some N such that for all
n,m > N , d(xn, xm) <

r
2
. Since yn is a convergent sequence, there is some k > N such that

d(yk, y
∗) < r

2
. Pick m such that xm = yk; hence d(xn, yk) <

r
2
. By the triangle inequality,

d(xn, y
∗) ≤ d(xn, yk) + d(yk, y

∗) <
r

2
+

r

2
= r.

We conclude that xn → y∗.

Theorem C.14. (R, d2) is a complete metric space.

Proof. This proof builds on two ideas from real analysis which we do not cover:

(i) Every real sequence has a weakly monotone1 subsequence.

(ii) If a real sequence is bounded and monotone, then it converges.
1A sequence is monotone if it is increasing or decreasing.
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Let xn ∈ R be any Cauchy sequence. Let yn be a monotone subsequence, which exists by (i).
By Theorem C.7, yn is a Cauchy sequence. By Theorem C.6, yn is bounded. By (ii), yn is a
convergent sequence. By Theorem C.13, xn is a convergent sequence.

Theorem C.15. Let (X, dX) and (Y, dY ) be metric spaces. If (Y, dY ) is a complete metric space,
then (B(X,Y ), d∞) and (CB(X,Y ), d∞) are complete metric spaces.

Proof. B(X,Y ) is complete: Let fn be a Cauchy sequence in (B(X,Y ), d∞). Then for any
x ∈ X, the sequence fn(x) is a Cauchy sequence in (Y, dY ). Since (Y, dY ) is a complete metric
space, fn(x) converges to some point, which we call f ∗(x) ∈ Y . By continuity of dY ,

dY (f
∗(x), fn(x)) = lim

m→∞
dY (fm(x), fn(x))

for all x ∈ X. Taking suprema, we find that
dY (f

∗(x), fn(x)) ≤ lim
m→∞

d∞(fm, fn)

for all x ∈ X, and hence
d∞(f ∗, fn) ≤ lim

m→∞
d∞(fm, fn).

Since fn is a Cauchy sequence, the right side converges to zero as n → ∞. We conclude that
d∞(fn, f

∗) → 0.2
We now check that f ∗ ∈ B(X,Y ), i.e. that f ∗ is bounded. Since d∞(fn, f

∗) → 0, there
exists some M such that d∞(fM , f ∗) < 1. Since fM ∈ B(X,Y ), there exists an open ball Br(y)
such that fM(X) ⊆ Br(y). By the triangle inequality,

dY (f
∗(x), y) ≤ dY (f

∗(x), fM(x)) + dY (fM(x), y)

≤ 1 + r.

Therefore, f ∗(X) ⊆ Br+1(y), so f ∗ is bounded.
We conclude that f ∗ ∈ B(X,Y ) and hence fn → f ∗.
CB(X,Y ) is complete: Let fn be a Cauchy sequence in (CB(X,Y ), d∞). Since CB(X,Y ) ⊆

B(X,Y ), the previous part implies that fn → f ∗ in B(X,Y ). It remains to show that f ∗ ∈
CB(X,Y ), i.e. f ∗ is continuous.

Let xk ∈ X be a convergent sequence with xk → x∗. We would like to prove that f ∗(xk) →
f ∗(x∗). Pick any r > 0. Since fn → f ∗ in B(X,Y ), there is someN such that d∞(fN , f

∗) < r/3.
Since, fN is continuous, fN(xk) → fN(x

∗), so there is some K such that dY (fN(xk), fN(x
∗)) <

r/3 for all k > K. Then for all k > K,
dY (f

∗(x∗), f ∗(xk))

≤ dY (f
∗(x∗), fN(x

∗)) + dY (fN(x
∗), fN(xk)) + dY (fN(xk), f

∗(xk)) (triangle inequality)
< r/3 + r/3 + r/3

= r.

2This is almost enough to establish that fn → f∗. But the definition of convergence also requires that
f∗ ∈ B(X,Y ).
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The strict inequality is obtained by summing three inequalities, the first and last of which
follow from d∞(fN , f

∗) < r/3, and the middle follows from dY (fN(xk), fN(x
∗)) < r/3 for all

k > K. We conclude that f ∗(xk) → f ∗(x∗), so that f ∗ is continuous.

Note that the first part of this theorem also applies to the space of bounded sequences, (ℓ∞, d∞),
since ℓ∞ = B(N,R).

Question C.45. ✓ Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a surjective
and continuous function. Find a counter-example to the following false conjecture: if (X, dX)
is complete, then (Y, dY ) is also complete.

Question C.46. ✓ Let (X, d) be a complete metric space. Prove that if A ⊆ X is a closed set,
then (A, d) is a complete metric space.

Question C.47. ✓ Let (X, dX) and (Y, dY ) be metric spaces and let Z = X × Y and
dZ((x, y), (x

′, y′)) = max {dX(x, x′), dY (y, y
′)}. Prove that if (X, dX) and (Y, dY ) are complete

metric spaces then (Z, dZ) is a complete metric space.

Question C.48. ✓ Consider the metric space (X, d∞) where

X = {f ∈ B[0, 1] : f is strictly increasing} .

Find a counter-example sequence to the following false statement: (X, d∞) is complete.

Question C.49. ✓ Let X = {(xn) : xn ∈ R and |xn| ≤ 1/n}. Prove that (X, d∞) is a complete
metric space.

Question C.50. ✓ Prove that (A, d∞) is complete, whereA = {f ∈ B(R) : f is weakly increasing}.

Question C.51. ✓ Prove that (A, d∞) is complete, whereA = {f ∈ B(Rn) : f is weakly concave}.

Question C.52. ✓ Prove that every discrete metric space is complete.

Question C.53. ✓ Suppose that the metric spaces (X, dX) and (Y, dY ) are complete. Let (Z, dZ)
be the metric space defined by Z = X × Y and dZ(x, y; x

′, y′) = max {dX(x, x′), dY (y, y
′)}.

Prove that (Z, dZ) is complete.

Question C.54. ✓ Let (X, d) be a complete metric space. Prove that (A, d∞) is a complete
metric space, where A = {(xn) ∈ l∞(X) : xn is convergent } .

Question C.55. ✓ Let X = {f ∈ CB[0, 1] : f is strictly concave}. Disprove the following false
conjecture: X is an open set in (CB[0, 1], d∞).

For more similar questions, see the following practice exam questions: 24.b.iii, 29.b.iv, 31.b.iv,
34.b.i, 34.b.v.
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C.8 Fixed Points
A common question that arises in economics is: does a system of equations have a solution?
For example, is there a market-clearing price such that supply equals demand (S(q) = D(q))?
Is there a vector of market-clearing prices so that all markets clear? Is there a value function
that satisfies a Bellman equation? Is there a vector of strategies for each player so that each
player’s strategy is a best response?

Fixed points are a geometric way of thinking about what a solution is. A point x is called
a fixed point if x = f(x). So if a problem can be formulated as revising a candidate solution
with a function f if it is wrong, then a solution is a point where no revision is necessary. The
simplest fixed-point theorem is described in Theorem 5.6.

There are three important fixed-point theorems in economics that we recommend every
research economist should know about. Banach’s fixed point theorem is the easiest to prove,
so we cover it here. It is also known as the contraction mapping theorem. It is very important
for understanding value functions and Bellman equations in macroeconomics. We state and use
Brouwer’s fixed point theorem (Theorem 5.7) without proof. Kakutani’s fixed point theorem
is a generalisation of Brouwer’s fixed point theorem to when decision maker’s have more than
one optimal choice. We do not cover this theorem.

We apply Brouwer’s fixed point theorem to establish the existence of a competitive equi-
librium in Theorem 5.5. Banach’s fixed point theorem can also be used to prove existence
(and uniqueness) of equilibria in some situations; see for example Cornes, Hartley and Sandler
(1999). But the main use of Banach’s fixed point theorem is studying Bellman equations. The
theorem establishes existence and uniqueness to solutions of Bellman equations in Section 4.3,
and also gives an algorithm for calculating the value function. We also find that Banach’s
fixed point theorem is very helpful for learning about the nature of the solution to a Bellman
equation, e.g. that it is continuous, increasing, and/or concave.
Definition C.14. A function f is a self-map if f : X → X, i.e. the domain of f equals the
co-domain.
Examples:

• f(x) = 1− x is a self-map on X = [0, 1], but not on X = [−1, 0].

• T (f)(x) = f(x) + 1 is a self-map on B[0, 1], but not on B([0, 1], [0, 1]).

Definition C.15. Let f : X → X be a self-map. A point x∗ ∈ X is a fixed point if x∗ = f(x∗).
Examples:

• The self-map f(x) = 1− x is a self-map on X = [0, 1] has a fixed point x∗ = 1
2
.

• The self-map T : B(R) → B(R) defined by T (f)(x) = f(x)f(0) has a fixed point
f ∗ : R → R defined by f ∗(x) = 1.
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Definition C.16. Let (X, dX) and (Y, dY ) be metric spaces, and a > 0. A function f : X → Y
is Lipschitz continuous of degree a if for every x, x′ ∈ X,

dY (f(x), f(x
′)) ≤ adX(x, x

′).

Question C.56. ✓ Prove that if f : X → Y is Lipschitz continuous, then f is continuous.
Definition C.17. Let (X, d) be a metric space. The self-map f : X → X is a contraction if it
is Lipschitz continuous of degree a < 1, i.e. d(f(x), f(x′)) ≤ ad(x, x′) for all x, x′ ∈ X.
Examples:

• The self-map f(x) = x is not a contraction on (R, d2).

• The self-map f(x) = 1
2
x is a contraction of degree 1

2
on (R, d2).

Theorem C.16 (Banach’s fixed point theorem). Let (X, d) be a complete metric space. If
f : X → X is a contraction of degree a, then

(i) f has a unique fixed point x∗.

(ii) Given any x0 ∈ X, the sequence defined by xn+1 = f(xn) converges to x∗.

(iii) d(xn, x
∗) ≤ an

1−a
d(x0, x1).

Proof. Uniqueness. Suppose x∗ and x∗∗ were distinct fixed points of f . As fixed points,
they would have d(f(x∗), f(x∗∗)) = d(x∗, x∗∗). This contradicts the contraction property,
d(f(x∗), f(x∗∗)) ≤ ad(x∗, x∗∗).

Existence and convergence. We first show that xn is a Cauchy sequence. Repeated
application of the contraction property implies d(xn, xn+m) = d(fn(x0), f

n(xm)) ≤ and(x0, xm).
This in turn implies

d(x0, xm) ≤ d(x0, x1) + d(x1, x2) + · · ·+ d(xm−1, xm) (C.3)
≤ d(x0, x1) + d(x1, x2) + · · · (C.4)
≤ d(x0, x1) + ad(x0, x1) + a2d(x0, x1) + · · · (C.5)
= 1

1−a
d(x0, x1). (C.6)

These two properties imply that

d(xn, xn+m) ≤ an

1−a
d(x0, x1) for all n,m. (C.7)

It is straightforward to show that d(xn, xm) ≤ d(xN , xm) for all n,m > N . Combining we
deduce

d(xn, xm) ≤ d(xN , xm) ≤ aN

1−a
d(x0, x1) for all n,m ≥ N , (C.8)
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and conclude that xn is a Cauchy sequence.
Since xn is a Cauchy sequence inside a complete metric space, xn converges to some limit;

call it x∗. By continuity of f , the sequence yn = f(xn) converges to f(x∗). But yn = xn+1, so
xn also converges to f(x∗). We conclude that x∗ = f(x∗), i.e. x∗ is a fixed point.

Approximation bound. By continuity of d and (C.8),

d(xn, x
∗) = lim

m→∞
d(xn, xm) ≤ an

1−a
d(x0, x1).

Question C.57. ✓ Prove that the following equation has exactly one solution x∗ ∈ R, and that
the solution has x∗ ∈ (0, 1

2
):

x =
1

x2 + x+ 2
.

Question C.58. ✓ Suppose (X, d) is a metric space, and that f : X → X is continuous. Prove
that the set of fixed points of f is closed.
Question C.59. ✓ Show that the following equation has exactly one bounded function f :
[0, 1] → R that solves it:

f(x) =
f(x2) + x2

2
for all x ∈ [0, 1].

Show that f is continuous and strictly increasing.
Question C.60. ✓ (Hard) Let (X, d) be a complete metric space, and define

CCa(X) = {f : X → X, f is a contraction of degree a} ,

with distances in CCa(X) measured by d∞(f, g) = supx∈X d(f(x), g(x)). Define T (f) as the
fixed point of f , which is well-defined by Theorem C.16. Prove that T : CCa(X) → X is a
continuous function.

Note: this question is useful for understanding how a good initial guess will affect the
number of iterations needed to arrive at a good approximate solution to a problem.
Question C.61. ✓ Say that a metric space (X, d) has the fixed point property if every con-
tinuous function f : X → X has a fixed point. Suppose that (X, d) and (X ′, d′) are metric
spaces and that there is a bijective function g : X → X ′ such that both g and g−1 are contin-
uous. Prove that (X, d) has the fixed point property if and only if (X ′, d′) has the fixed point
property.
Question C.62. ✓ Let (X, d) be any metric space. Fix any a < 1. Prove that the set of
contractions of degree a is a closed set in (CB(X,X), d∞).
Question C.63. ✓ Let (X, d) be a complete metric space, A be any subset of X, and suppose
f : X → X is a contraction with fixed point x∗ ∈ X. Prove that if f(A) ⊆ A then x∗ ∈ cl(A).
For more similar questions, see the following practice exam questions: 21.b.vi, 24.b.v, 24.b.vi,
27.b.vi, 27.b.viii, 28.viii, 29.b.ii, 30.viii, 34.b.viii.
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C.9 Compact Sets
One of our motivations for studying boundaries was to understand the nature of maximum
utilities or maximum profits. Maxima lie on the “boundary” of what is possible. To be more
specific, one important question in economics is: does the decision maker have an optimal
choice? One thing that can go wrong is that the decision-maker can get an infinitely large
utility, if the circumstances are “too” favourable. Another thing that can go wrong is that
there is a “hole” where the optimal decision ought to lie. In both of these cases, the problem
is related to a missing boundary. In the first case, the set of feasible utilities is “unbounded”,
i.e. does not fit inside any open ball. In the second case, the set of feasible options either does
not contain its own boundary (or the underlying space is incomplete). Since neither concept
alone captures the idea of having a boundary (in the sense of optimal choices), this lead to a
new concept called “compactness.”

The concept of compact sets (and compact metric spaces) has several equivalent definitions.
The following definition is based on the idea that if a set is “well-contained,” then any sequence
within the set has to bounce around enough so that it (or some subsequence of it) eventually
converges to something.
Definition C.18. Let A be a subset of a metric space (X, d). We say A is compact if every se-
quence xn ∈ A has a convergent subsequence yn → y∗ such that y∗ ∈ A. We say a metric space
(X, d) is a compact metric space if X is a compact set within the (X, d), or equivalently,
that every sequence xn ∈ X has a convergent subsequence.
This definition quite abstract. It requires some work even to find an example of a compact set.
To this end, we will study some basic facts about compact sets and compact metric spaces.
Question C.64. ✓ Prove that every compact metric space is complete.
Theorem C.17. Suppose (X, d) is a compact metric space. If K ⊆ X is closed, then K is
compact.

Proof. Let xn ∈ K be any sequence. Since (X, d) is compact, xn contains a convergent
subsequence yn → y∗ with y∗ ∈ X. Since K is closed, y∗ ∈ K.

Theorem C.18. Suppose f : X → Y is a continuous function between metric spaces (X, dX)
and (Y, dY ). If X is a compact metric space, and Y is the range of f , then Y is also a compact
metric space.

Proof. Let yn be any sequence in Y . Since we assumed Y = f(X), there exists a sequence
xn ∈ X such that yn = f(xn) for all n. Since X is compact, there is a convergent subsequence
of xn, with indices that we will denote by nk. Since f is continuous, it follows that f(xnk

) is
a convergent subsequence of yn.

We now introduce yet another notion of “boundary” – being contained in an open ball.
Definition C.19. A set is bounded if it is contained in some open ball.
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So we now have three ideas about sets being “bounded” (i) compact sets, i.e. sets whose
sequences contain convergent subsequences, (ii) closed sets, i.e. sets that contain their bound-
ary, and (iii) bounded sets, i.e. sets that are contained inside an open ball. These definitions
are not the same! The following theorem says that inside the metric spaces (Rn, d2), (i) is
equivalent to (ii) and (iii) combined.
Theorem C.19 (Bolzano-Weierstrass). Let A be a subset of (Rn, d2). Then A is compact if and
only if A is closed and bounded.
Note that the half of the Bolzano-Weierstrass theorem is true in any metric space. Specifically,
if A is compact, then A is closed and bounded. The first half of the proof below generalises in
a straightforward way.

Proof. First, we show that if A is compact, then it is closed and bounded. Suppose A were not
bounded – that there were a sequence in which d(xn, 0) > n. This sequence xn is unbounded
and so are all of its subsequences. By Theorem C.1, neither xn, nor any if its subsequences
are convergent, which contradicts the assumption that A is compact. To see that A is closed,
suppose that yn ∈ A converges to y∗. Since A is compact, yn has a subsequence that converges
to y∗∗ ∈ A. By Theorem C.3, y∗ = y∗∗, so y∗ ∈ A.

Second, suppose that A is closed and bounded in (Rn, d2). Instead of directly proving that
A is compact, it suffices to prove that ([0, 1]n, d2) is compact. To see this, first note that since
A is bounded, it fits inside some ball Br(0), and hence inside K = [−r, r]n. Now, we can find
a continuous and surjective function f : [0, 1]n → K, and we will show that [0, 1]n is compact.3
So we will deduce that K is compact by Theorem C.18. We will conclude by Theorem C.17
that A is compact, since it is a closed subset of K.

Thus, it remains to show that ([0, 1]n, d2) is compact. Suppose that xn ∈ [0, 1]n is a
sequence. We need to show that xn has a convergent subsequence, whose limit lies in [0, 1]n.
Our strategy is to find a subsequence yn that is Cauchy. Since [0, 1]n is a closed subset of
a complete space, yn converges to a point inside [0, 1]n. For simplicity, we only prove the
special case that n = 2. (It is straightforward to generalise the proof.) Pick any whole number
k. Notice that we can cover [0, 1]n with a grid of 2k squares of length (1

2
)k, as depicted in

Figure C.9a. One of these squares must contain a subsequence of xn. We can select yk = xn,
where n is the smallest index with xn lying in that square, as depicted in Figure C.9b. For
any k, the sequence yk, yk+1, yk+2, · · · lies inside a square of size (1

2
)k. It follows that yk is a

Cauchy sequence. Since (Rn, d2) is a complete, we conclude that yk converges to a point inside
[0, 1]n. We conclude that [0, 1]k is compact, and, as argued above, A is compact.

Thus, examples, of compact sets include:

• [0, 1] in (R, d2),

• [0, 1]2 in (R2, d2),
3One such function is fi(x) = 2r(xi − 1

2 ).
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(a) At least one square contains an infinite number
of points
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(b) Constructing a convergent subsequence

Figure C.9: The Bolzano-Weierstrass Theorem

• [0, 1] ∪ [2, 3] in (R, d2).

Examples of non-compact sets:

• These sets are not compact subsets of (R, d2): (0, 1); [0,∞); and R.

• (B(R), d∞) is not compact, because fn(x) = n does not have a convergent subsequence,
because every subsequence of fn is unbounded.

• (B(R, [0, 1]), d∞) is not compact. Consider the sequence of boa constrictors digesting a
cow, fn(x) = I(x ∈ [n, n + 1]). This sequence does not have a convergent subsequence.
To see this, notice that d∞(fn, fm) = 1 for all n 6= m. Thus, no subsequence of fn is a
Cauchy sequence, and hence fn does not have a convergent subsequence.

We now turn our attention to the relationship between extreme values (such as maximal
utilities or profits) and boundaries. The extreme value theorem is one of the most important
theorems for economists: it tells us when there is an optimal choice, a solution to the social
planner’s problem, an optimal contract, a worst possible punishment, etc. It is sometimes
called the Weierstrass theorem.
Theorem C.20 (Extreme value theorem). Suppose f : X → R is a continuous function between
metric spaces (X, d) and (R, d2). If X is compact and non-empty, then f has a maximum (and
a minimum), i.e. the following problem has a solution:

max
x∈X

f(x).

Proof. Set Y = f(X), and apply Theorem C.18, and we conclude that Y is a compact set.
By Theorem C.19, Y is a closed and bounded. Since Y is bounded, its supremum supY is
finite. Let yn ∈ Y be a sequence converging to supY . Since Y is closed, supY ∈ Y , so maxY
exists.

Thus far, we have thought of compactness in terms of sequences. We will now study compact-
ness in terms of open sets. Note: mathematicians favour the open set view of compactness,
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even though the two views are equivalent in metric spaces (but not in general topological
spaces).
Definition C.20. A cover of a set A is a collection of sets C such that A ⊆ ∪C∈CC.
Definition C.21. Let C be a cover of A. Then C ′ is a subcover if C ′ ⊆ C and C ′ is a cover of A.
Definition C.22. Let (X, d) be a metric space. An open cover of a set A is a cover of A
consisting of open sets in X.
Lemma C.1. Let (X, d) be a metric space. If a sequence xn ∈ X has no convergent subsequence,
then for all x ∈ X, there exists r(x) > 0 such that Br(x)(x) contains finitely many xn.

Proof. Suppose xn ∈ X has no convergent subsequence. For the sake of contradiction, suppose
that there is some x such that for every r > 0, there is a subsequence yn contained in Br(x).
In this case, we can construct a convergent subsequence of xn. Specifically, we can pick a
subsequence zn with the property that d(zn, x) < 1

n
for all n. This subsequence converges with

zn → x. This conclusion contradicts the assumption that xn has no convergent subsequence.

Theorem C.21. Let (X, d) be a metric space. A ⊆ X is compact if and only if every open cover
of A has a finite subcover.

Proof. We start with the reverse direction, which is easier. Suppose any open cover of A
has a finite subcover, and that for the sake of contradiction, that the sequence xn ∈ A has
no convergent subsequence. Consider the open cover C =

{
Br(x)(x) : x ∈ A

}
of A, chosen

according to Lemma C.1 so that each set contains only finitely many xn. Then C has a finite
subcover, D. At least one set D ∈ D has infinitely many xn, contradicting the definition of C.

Conversely, suppose that any sequence in A has a convergent subsequence, and let U be
any open cover of A. Let

f(x) = sup {r : Br(x) ⊆ U for some U ∈ U}

be the largest radius ball r around x that is contained in one of the open sets in U . Note that
f(x) > 0 for all x ∈ A. Now, let r∗ = infx∈A f(x).

First, we will prove that r∗ > 0. Suppose this were false, i.e. there is a sequence xn ∈ A
such that f(xn) → 0. Let yn → y∗ be a convergent subsequence of xn. Now, f(y∗) > 0 and
f(yn) > f(y∗)− d(yn, y

∗), contradicting f(yn) → 0.
Second, construct a finite sequence xn as follows: pick any x1 ∈ A, and when picking

xn, ensure that d(xn, xm) > r∗ for all m < n. If this is not possible, then stop. Note that
this procedure must end at some number of points N ; otherwise xn would be a non-Cauchy
sequence, and hence not have a convergent subsequence.

Finally, we can construct a finite subcover of U from the sequence xn. Specifically, each
neighbourhood Br∗(xn) is contained in some set Un ∈ U . We conclude that {U1, · · · , UN} is a
finite subcover.
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Theorem C.22 (Heine-Borel). Consider a Euclidean metric space, (Rn, d2), and a subset X ⊆
Rn. Then X is closed and bounded if and only if every open cover of X has a finite subcover.

Proof. This is a straight-forward corollary of the Bolzano-Weierstrass Theorem (Theorem C.19)
and Theorem C.21.

Theorem C.23 (Cantor’s intersection theorem). Let (X, d) be a metric space, and let Kn be a
sequence of subsets of X. If each Kn is non-empty, compact, and nested (i.e. Kn+1 ⊆ Kn),
then ∩nKn 6= ∅.

Proof. Most theorems about compactness have easy proofs starting from both the Heine-Borel
and the Bolzano-Weierstrass view of compactness. The proofs usually look quite different
though!

Heine-Borel based proof. Without loss of generality, assume that K1 = X. Let Un =
X\Kn; notice that each Un is open. Suppose for the sake of contradiction that ∩nKn = ∅.
In that case, ∪nUn = X, so that {Un} is an open cover of X. Therefore, {Un} has a finite
subcover, U . Since Un ⊆ Un+1, it follows that for some N , UN = ∪U∈UU = X. But this
contradicts UN = X\KN ⊂ X.

Bolzano-Weierstrass based proof. Let xn be any sequence with the property that
xn ∈ Kn. Since xn ∈ K1, there is a convergent subsequence yn = xk(n). Also note that yn ∈ Kn

because the sets Kn are nested. Let y∗ be the limit of yn. Now, since K1 is closed and yn ∈ K1,
it follows that y∗ ∈ K1. Similarly, since K2 is closed and y2, y3, · · · ∈ K2 (since Kn are nested),
it follows that y∗ ∈ K2. Repeating this logic establishes that y∗ ∈ Kn for all n. We conclude
that ∩nKn contains y∗, and is therefore non-empty.

Question C.65. ✓ Which of the following sets are compact in (R, d2): ∅, R, {0}, [0, 1), [0, 1]?
Which of the following sets are compact in (R++, d2): (0, 1), (0, 1]?
Question C.66. ✓ Let (X, d) be any metric space. Prove that if K ⊆ X is a compact set, then
K is closed and bounded.
Question C.67. ✓ Suppose that (X, dX) and (Y, dY ) are metric spaces. Let Z = X × Y and
dZ(x, y; x

′, y′) = dX(x, x
′) + dY (y, y

′). Prove that if (X, dX) and (Y, dY ) are compact metric
spaces, then (Z, dZ) is also a compact metric space.
Question C.68. ✓ Consider any price vector p ∈ RN

++. Prove that the budget set, A ={
x ∈ RN

+ : p · x ≤ m
}

is a compact set inside the metric space (RN
+ , d2). Is this still true if

home production is possible?
Question C.69. ✓ Consider the set of feasible allocations in a pure-exchange economy involving
H households and N goods. Is this set compact inside (RHN

+ , d2)?
Question C.70. ✓ Consider the set of normalised prices,

P =

{
p ∈ RN

++ :
∑
n

pn = 1

}
.
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Is this compact inside (RN , d2)?

Question C.71. ✓ Prove that if all households have continuous utility functions, and the social
welfare function is continuous, then there exists a solution to the social planner’s problem in
a pure exchange economy.

Question C.72. ✓ Let (X, d) be a non-empty compact metric space. Let R : X → X be a
continuous function (e.g. a best-response function.) Consider the following sequence of sets:
A1 = X and An+1 = R(An) (e.g. nth-order rationalisable strategies). Prove that ∩nAn 6= ∅.

Question C.73. ✓ Let (X, d) be a metric space. Prove that if C is a collection of compact sets
in X, then ∩K∈CK is compact.

Question C.74. ✓ Prove the following theorem (sometimes called the Paving Lemma): Let A
be an open subset of a metric space (X, d). Suppose f : [0, 1] → X is a continuous function
with f([0, 1]) ⊆ A, where distances in [0, 1] are measured with d1. Then f([0, 1]) has a finite
cover C of open balls such that each ball B ∈ C has B ⊆ A.

Question C.75. ✓ Prove that a metric space (X, d) using the discrete metric is compact if and
only if X is a finite set.

Question C.76. ✓ Consider the metric space (X, d) where X = [0, 1) and

d(x, y) = min
k∈Z

d1(k + x, y).

Prove that (X, d) is compact. Hint: find a continuous function f : [0, 1] → X.

Question C.77. ✓ Let (X, d) be a compact metric space. Suppose that xn ∈ X is a non-
convergent sequence. Prove that there are two convergent subsequences with distinct limits x∗

and x∗∗.

Question C.78. ✓ Let (X, d) be a compact metric space, and let xn ∈ X be a sequence. Prove
that if every convergent subsequence of xn converges to x∗, then xn → x∗.

Question C.79. ✓ Let (X, dX) and (Y, dY ) be metric spaces. Prove that if f : X → Y is
continuous, f is surjective, and (X, dX) is a compact metric space then (Y, dY ) is a complete
metric space.

Question C.80. ✓ (Hard) Suppose f : R → R is weakly increasing. Fix any x∗ ∈ R. Consider
any two sequences xn, yn ∈ [x∗,∞) that both converge to x∗. Prove that limn→∞ f(xn) =
limn→∞ f(yn).

For more similar questions, see the following practice exam questions: 12.vii, 13.viii, 14.viii,
16.vii, 21.b.ii, 21.b.iii, 21.b.iv, 24.b.ii, 24.b.iv, 24.b.vii, 25.vi, 25.vii, 29.b.v, 29.b.vi, 29.b.vii,
31.b.v, 31.b.vi, 31.b.vii, 32.vi, 32.vii, 34.b.ii, 34.b.iii, 34.b.vii.
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C.10 Connected Sets
Are compromises possible? For instance, suppose we know that it’s possible to deter crime
with brutal policing, and it’s possible to have rampant crime without policing. Is a middle
ground possible? Or is there a “hole”, i.e. perhaps in some impoverished countries, moderate
policing also leads to rampant crime?
Definition C.23 (Connected set). A metric space (X, d) is connected if the only sets in it that
are both open and closed are the trivial sets, ∅ and X. We say A is a connected set inside
of (X, d) if (A, d) is a connected metric space.
A preliminary example:

• ([0, 1] ∪ [2, 3], d2) is a disconnected metric space, because [0, 1] is both open and closed.

This example illustrates why a space might not be connected. But how can we verify that
a space is connected? The next theorem gives us a way to “build” one connected metric space
out of another.
Theorem C.24. Consider two metric spaces (X, dX) and (Y, dY ). If (X, dX) is connected, and
f : X → Y is continuous and surjective, then (Y, dY ) is connected.

Proof. We will prove the contrapositive, i.e. that if (Y, dY ) is disconnected, then (X, dX) is
disconnected.

If (Y, dY ) is disconnected, then there exists some non-trivial subset B ⊂ Y that is both open
and closed. By Theorem C.12 and Question C.34, A = f−1(B) is both open and closed. Since
f is surjective, A 6= X. Since B is non-empty, A is non-empty. Therefore, A is a non-trivial
subset of X that is both open and closed. We conclude that (X, dX) is disconnected.

The previous theorem is useful if we already have a connected metric space on hand to “com-
pare” to other metric spaces. But we need to get started somewhere with one metric space
that we know is connected.
Lemma C.2. ([0, 1], d2) is a connected metric space.

Proof. Suppose for the sake of contradiction that there is some set A that is a non-trivial
subset of [0, 1] that is closed and open. Let B = [0, 1]\A. By Theorem C.10, B is also a
non-trivial subset that is closed and open.

Without loss of generality, assume 1 ∈ B. (1 has to be in one of A or B, so we can swap
the role of A and B if necessary.) Let ā = supA. Since A is closed, ā ∈ A.

Since A contains none of (ā, 1], and B is the complement of A, we conclude that (ā, 1] ⊆ B.
Now ā < 1 because 1 ∈ B. Consider the sequence bn ∈ (ā, 1] ⊆ B defined by bn = ā+ 1

n
(1− ā).

Notice that bn → ā. Since B is closed, we conclude that ā ∈ B. But ā can not both be in A
and its complement, B.
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We now use our one example of a connected metric space, armed with the theorem for com-
paring metric spaces, to establish that all convex spaces are connected.
Theorem C.25. Consider any Euclidean metric space (Rn, d2). If A ⊆ Rn is a convex set, then
(A, d2) is a connected metric space.

Proof. Suppose for the sake of contradiction that (A, d2) is a disconnected metric space. Then
there exists a non-trivial set B ⊂ A such that B is both open and closed. Let C = A\B. By
Theorem C.10, C is both open and closed in (A, d2).

Pick any point b ∈ B and any point c ∈ C. Since B and C are subsets of A, and A is a
convex set, we know that [b, c] ⊆ A.

Consider the metric space ([b, c], d2). Let B̄ = B ∩ [b, c] and C̄ = C ∩ [b, c]. B̄ and C̄ are
closed inside ([b, c], d2). And since B̄ ∪ C̄ = [b, c], it follows that B̄ and C̄ are complements of
closed sets, and are thus open. Both B̄ and C̄ are non-trivial subsets of [b, c] (that contain b and
c respectively) that are both open and closed inside ([b, c], d2). So ([b, c], d2) is a disconnected
metric space.

But the function f : [0, 1] → [b, c] defined by f(x) = xb + (1 − x)c is continuous and
surjective onto ([b, c], d2). Since the domain, ([0, 1], d2) is connected, Lemma C.2 implies that
the co-domain ([b, c], d2) connected – a contradiction.

Theorem C.26. Consider the metric space (R, d2). If A is a connected set, then A is convex.

Proof. We will prove the contrapositive: if A is not convex, then A is disconnected.
Suppose A is not convex. Then there exists three numbers a, b, c ∈ R such that a, c ∈ A

and b 6∈ A and b ∈ (a, c), i.e. b is a convex combination of a and c. Let U = A ∩ (−∞, b) and
V = A ∩ (b,∞).

Both U and V are non-empty, since a ∈ U and c ∈ V . The union of U and V equals A
(since b 6∈ A). Finally, we show that U and V are both open and closed inside the metric space
(A, d2). Let un ∈ U be a convergent sequence with un → u∗. Since un ∈ U , each un < b. So
u∗ ≤ b. Since b 6∈ A, we deduce that u∗ < b. Therefore u∗ ∈ A ∩ (−∞, b) = U . So U is a
closed set. By similar reasoning, V is a closed set. By Theorem C.10, U and V are open sets
in (A, d2). So (A, d2) is disconnected.

We are now in a better position to give some examples:

• ([0, 1], d2) is a connected metric space.

• (Rn, d2) is a connected metric space.

• Let X = {(x, y) : x2 + y2 = 1} be the circle of radius 1. Then (X, d2) is a connected
metric space. To see this, notice that the function f : [0, 2π] → X defined by f(x) =
(cosx, sinx) is continuous and surjective. Since the domain is connected, Theorem C.24
implies the co-domain, (X, d2) is connected.
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The main use for connected sets is for establishing that intermediate choices (i.e. compro-
mises) between two extremes are possible.

Theorem C.27 (Intermediate Value Theorem). Consider any continuous function f : X → R
from a connected metric space (X, d) to (R, d2). If a, b ∈ X, then every y ∈ [f(a), f(b)] has an
inverse x ∈ X with f(x) = y.

Proof. Let Y = f(X). Since (X, d) is connected and f is continuous, Theorem C.24 implies
that (Y, d2) is connected. Then Theorem C.26 implies Y is a convex set. Since f(a), f(b) ∈ Y ,
it follows that the interval [f(a), f(b)] ⊆ Y lies in the range of f . Therefore, any y ∈ [f(a), f(b)]
has an inverse.

Question C.81. ✓ Prove that the following alternative definition of disconnected metric space
is equivalent: the metric space (X, d) is disconnected if there exist two non-empty disjoint
open sets, A,B ⊆ X such that A ∪B = X.

Question C.82. ✓ Suppose u : Rn
+ → R is continuous utility function, and that there exists

two consumption bundles x∗, x∗∗ ∈ Rn
+ such that u(x∗) = 0 and u(x∗∗) = 2. Prove that there

exists a consumption bundle x such that u(x) = 1.

Question C.83. ✓ Let L(t) be the Laffer curve for some (unmodelled) economy, which specifies
the amount of tax revenue for each tax rate t ∈ [0, 1]. Suppose that L is continuous, L(0) =
L(1) = 0, and suppose that L has some maximum revenue, R∗. Pick any target revenue
R ∈ [0, R∗). Prove that there are (at least) two tax rates t that can raise revenue R, i.e.
L(t) = R.

Question C.84. ✓ Suppose a tax rate of t leads to an income share of F (s, t) among the
poorest s fraction of people. (F (·, t) is the Lorenz curve resulting from tax rate t.) Assume
that F : [0, 1]2 → [0, 1] is continuous when distances are measured according to d2. Suppose
that at a tax rate of 1%, the poorest 50% of households earn 20% of the income, and at a tax
rate of 50%, the poorest 40% of households earn 30% of the income, i.e. F (0.5, 0.01) = 0.2
and F (0.4, 0.5) = 0.3.

(i) Prove that there exists a tax rate t∗ ∈ [0, 1] and a fraction of people s∗ ∈ [0, 1] such
that at the tax rate t∗, the bottom s∗ fraction of people earn 25% of the income, i.e.
F (s∗, t∗) = 0.25.

(ii) Now adapt you proof to establish that such a (s∗, t∗) exists inside [0.4, 0.5]× [0.01, 0.5].

Question C.85. ✓ * Prove that in a pure exchange economy, if the households’ utility functions
are continuous then the utility possibility set is connected.

Question C.86. ✓ Prove that (X, d) is a connected metric space if and only if the only sets
with an empty boundary are ∅ and X.
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C.11 Application: Extreme Punishments
A well-known paradox in economic theory was discovered by Becker (1968). The advantage of
a big police force is that they catch more criminals. But crime can also be deterred by reducing
the size of the police force and increasing the penalties. Since police forces are expensive, the
cheapest way to deter crime would be to have a very small police force (e.g. one part-time
police officer), along with life sentences for all crimes, including parking offenses.

Clearly, there is something wrong with this view of the world. Nevertheless, this logic is
the premise of many “tough-on-crime” campaigns, so it is worth examining the logic carefully
before speculating about what might be wrong with it.

Suppose the government chooses the sanction s ∈ R+ imposed on convicted criminals, and
the conviction probability p ∈ [0, 1]. A conviction probability of p costs the government c(p)
in policing costs, where c is a strictly increasing and continuous function. Honest people get a
payoff of h. Criminals that evade detection get a bounty payoff of b. The government’s problem
is to minimise enforcement costs subject to the incentive constraint that crime is deterred:

min
s∈R+,p∈[0,1]

c(p) (C.9)

s.t. h ≥ −ps+ (1− p)b. (C.10)

Which possible institutional arrangements succeed in deterring crime? Let f : R+×[0, 1] →
R be the function defined by f(s, p) = −ps+ (1− p)b. Then the set of (s, p) that deters crime
is equal to D = f−1((−∞, h]). Since f is continuous, we know that D is a closed set inside
(R+ × [0, 1], d2).

Is there an optimal solution to this problem? Even thoughD is closed, it is not compact. To
see this, consider the sequence (sn, pn) = (n(b−h), 1/n). Notice that f(sn, pn) = −(1/n)(n(b−
h)) + (1− 1/n)b = h− b/n < h, so each (sn, pn) ∈ D. But (sn, pn) does not have a convergent
subsequence within D. Both sn and pn are problematic. First, pn → 0, but no matter how
harsh the punishment is s is, (s, 0) 6∈ D. Second, sanctions sn diverges to ∞.

So we can not use the Extreme Value Theorem to establish that there is an optimal choice.
In fact, this sequence illustrates establishes there is no optimal solution: the welfare of

each proposal on the sequence is −c(pn), which converges to c(0), which is the best possible
outcome. But c(0) itself is infeasible – it’s impossible to deter crime without any police.

C.12 Application: The market for lemons
Suppose the seller receives a signal x ∈ [0, 1] drawn from a cumulative distribution function F ,
and that x represents the (posterior) probability that his car is good. Assume that F has full
support on [0, 1], i.e. F is strictly increasing. The seller values a good car as c, his opportunity
cost of selling it. The buyer values a good car as v. Both players know that trade is efficient,
i.e. v > c. They just have to agree on a price p.
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Let s(x, p) = p− xc be the seller’s surplus from selling the car at price p if his signal is x.
The seller decides to sell if s(x, p) ≥ 0. Let X(p) = {x : s(x, p) ≥ 0} be the set of seller types
who would sell at price p.

The buyer would agree to buy at price p if Ex[xv − p|s(x, p) ≥ 0] ≥ 0, or more precisely

1∫
X(p)

dF (x)

∫
X(p)

(xv − p) dF (x) ≥ 0,

which is true if and only if ∫
X(p)

x dF (x)∫
X(p)

dF (x)︸ ︷︷ ︸
P (good|seller accepts price p)

v ≥ p.

Is there an equilibrium price p in which the buyer agrees to buy?
Introductory economics books focus on simple distributions of F , like uniform distributions.

But what techniques can we use if we do not know the precise shape of F?
Approach 1: iterated deletion of types. This approach is similar to iterated deletion

of strictly dominated strategies, but we delete types rather than strategies. (The two ideas
are equivalent, because deleting a type boils down to deleting a set of strategies that involve
selling whenever a deleted type arises.) Let X0 = [0, 1], the full set of types. If all of these
types sell, then the buyer would pay up to p0 =

1∫
X0

dF (x)

∫
X0

x dF (x) v for the car.4 But then
seller types with c > p would decide not to sell any more. Let X1 be the set of sellers still
interested in selling the car, i.e.

X1 = {y ∈ [0, 1] : p0 > yc} = [0, p0/c].

Notice that X1 is a closed and non-empty subset of [0, 1]. Similarly, we can define p1 and X2,
with p1 =

1∫
X1

dF (x)

∫
X1

x dF (x) v and X2 = [0, p1/c]. And we can define pn and Xn+1.
Notice that Xn+1 ⊆ Xn because the price pn decreases each step. Also notice that each Xn

is closed and non-empty, since pn > 0. By the Cantor intersection theorem, after an infinite
number of deletions, there are some seller types still willing to sell, i.e. ∩nXn 6= ∅.

This establishes that after a (countably) infinite number of rounds of deletion, the market
does not completely collapse – there are still some sellers willing to sell. But did we do enough
deletion?

To illustrate what might go wrong, it’s easier to look at what might happen to prices. If
the price is initially p, then some sellers might leave the market, and the price drops to g(p),

4You might not have seen this notation for integrals before.
∫
X
f(x)dG(x) means calculating the area

underneath the f function whose domain is restricted to X, but weighting the importance of each x ∈ X
according to the cumulative distribution function G. This notation accommodates holes, and probability
distributions with both mass points and continuous distributions.
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where an example g function is

g(p) =

{
0 if p ≤ 1

2
,

p
2
+ 1

4
if p > 1

2
.

An equilibrium occurs where the price does not change, i.e. at a fixed point g(p) = p.
Notice that gn(1) → 1

2
, even though 1

2
is not an equilibrium price. The only equilibrium

price is p = 0.
Approach 2: iterated price cuts. Instead of looking at the set of seller types Xn

that are still willing to sell, we could instead look at the sequence of seller surplus functions
Sn(x, pn). Does Sn converge?

C.13 Extra questions
These will be moved at the end of the year to a sensible place (and not before, to avoid
confusing question numbers).
Question C.87. ✓ Suppose f : X → X is a self-map on a compact metric space (X, d). Prove
that if f is surjective, then f is not a contraction.
Question C.88. ✓ Suppose A is closed inside (X, d) and Y ⊆ X. Prove that B = A ∩ Y is
closed inside (Y, d).
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Appendix D

Convex Geometry

Geometry is the study of the properties of spaces in which distances and angles are important.
The classic text that economists refer to is Rockafellar (1970). We feel that Rockafellar (1970) is
difficult to read, and has too many technical distractions, so we prefer Boyd and Vandenberghe
(2004) for an introduction, and Luenberger (1969) when there are an infinite number of choice
variables.

Convex geometry is useful for studying “mixtures” of choices. For example, is it better
to specialise in one subfield such as development economics, or is it better to have a broad
knowledge of economics, mathematics, and politics?
Definition D.1. A closed interval between two points x, x′ ∈ Rn is defined as

[x, x′] = {ax+ (1− a)x′ : a ∈ [0, 1]} .

The expression “ax + (1 − a)x′” is called a convex combination, mixture or weighted
average, and a and 1 − a are called weights. Similar definitions are available for (x, x′),
[x, x′) and (x, x′].
Two intervals are depicted in Figure D.1 and Figure D.2.

x

x′

Figure D.1: [x, x′]
x

x′

Figure D.2: (x, x′]

Definition D.2. X ⊆ Rn is convex set if for all x, x′ ∈ X, the interval [x, x′] is contained in
X.
The sets in Figure D.3a are not convex, but the sets in Figure D.4a are convex.

137
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(a) Non-convex sets

(a) Convex sets
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For the rest of this section, X is assumed to be a subset of Rn.
Theorem D.1. The intersection of convex sets is convex, as depicted in Figure D.5.

Proof. Suppose A and B are convex sets. We need to show that for every pair of points inside
the intersection, the interval that connects is a subset of the intersection, i.e. if x, x′ ∈ A ∩ B
then [x, x′] ⊆ A∩B. If x ∈ A∩B, then x ∈ A and x ∈ B, and similarly of x′. Since A is convex
and x, x′ ∈ A, it follows that [x, x′] ⊆ A, and likewise for B. Therefore [x, x′] ⊆ A ∩ B.

Figure D.5: The intersection of convex sets is convex

Definition D.3. f : X → R is a convex function if its hypergraph

{(x, y) : x ∈ X, y ≥ f(x)}

is convex.
Note: a function f can only be convex if its domain X is convex. The functions in Figure D.6
are convex, but those in Figure D.7a are not.

Figure D.6: Hypergraphs of convex functions
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(a) Hypergraphs of non-convex functions

Definition D.4. f : X → R is a concave function if g(x) = −f(x) is convex (or equivalently,
if its hypograph {(x, y) : x ∈ X, y ≤ f(x)} is convex).
Caution: there is no such thing as a concave set.

Figure D.8 provides examples and counter-examples of concave functions.
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(a) concave (b) concave and convex

(c) neither concave nor convex
Figure D.8: Examples and counter-examples of concave functions

Theorem D.2. If f : X → R is a convex function and X ⊆ Rn is an open set, then f is
continuous.
Theorem D.3. Suppose f : R → R is differentiable. Then f is convex if and only if its
derivative, f ′ is weakly increasing.
Theorem D.4. Suppose f : R → R is a twice differentiable function. Then f is convex if and
only if f ′′(x) ≥ 0 for all x.
Theorem D.5. Suppose f : X → R is a function on a convex set X. Then f is convex if and
only if for all x, y ∈ X, the function g : [0, 1] → R defined by g(t) = f (t x+ (1− t) y) is
convex.
Theorem D.6. A function f : X → R is convex if and only if X is convex and for all x, x′ ∈ X
and all a ∈ (0, 1),

a f(x) + (1− a) f(x′) ≥ f (a x+ (1− a) x′) .

Definition D.5. The upper contour set of a function f : X → R at level y is {x : f(x) ≥ y}.
A similar definition exists for lower contour sets.
Definition D.6. f : X → R is a quasi-convex function if all of its lower contour sets are
convex. The definition of quasi-concave function is analogous.
The distinction between convexity and quasi-convexity is subtle: the former is about hyper-
graphs whereas the latter is about lower contour sets. Both concepts are depicted in Figure D.9.
Theorem D.7. A function f : X → R is quasi-convex if and only if X is convex and for all
x, x′ ∈ X and all a ∈ (0, 1),

f(ax+ (1− a)x′) ≤ max {f(x), f(x′)} .
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x

f(x)

Figure D.9: The hypergraph and a lower contour set of a convex function

Theorem D.8. If f is convex, then it is quasi-convex.
Definition D.7. * X ⊆ Rn is a strictly convex set if for all x, x′ ∈ X the open interval (x, x′)
is contained in the interior of X.
Definition D.8. * f : X → R is strictly convex function if its hypergraph is strictly convex.
Definition D.9. * f : X → R is a strictly quasi-convex function if all of its lower contour
sets are all strictly convex.
Theorem D.9. A function f : X → R is strictly convex if and only if X is convex and for all
x, x′ ∈ X and all a ∈ (0, 1),

af(x) + (1− a)f(x′) > f(ax+ (1− a)x′).

Theorem D.10. A function f : X → R is strictly quasi-convex if and only if X is convex and
for all x, x′ ∈ X and all a ∈ (0, 1),

f(ax+ (1− a)x′) < max {f(x), f(x′)} .

Theorem D.11. If f is strictly convex, then it is strictly quasi-convex.
Theorem D.12. Supppose f : X → R is a function and let g : X × R → R be defined by
g(x, y) = f(x)− y. Then f is a convex function if and only if g is a quasi-convex function.

Proof. Suppose that f is a convex function. Note that f and −y are convex functions, so their
sum, g(x, y) = f(x) − y is a convex function. We deduce that g is a convex function, and is
therefore quasi-convex.

Conversely, suppose that g is a quasi-convex function. Notice that the hypergraph of f is
the lower contour set of g at level 0, i.e. hyper(f) = {(x, y) ∈ X × R : g(x, y) ≤ 0}. Since g is
quasi-convex, this set is convex. We conclude that f is a convex function.
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Optimisation

Optimisation is about choosing the best item from a menu. There are four questions that
commonly arise in economics: (i) Is there an best choice? (ii) Is there more than one best
choice? (iii) How can we identify the best choice? (iv) How does the best choice change when
the menu changes? After defining what we mean by a best choice, we address these questions
in turn. Then we end the section with ways to simplify optimisation problems.

E.1 Definitions
Luenberger (1969) and Rockafellar (1970) are the classics in the field of optimization, although
we prefer Luenberger (1969) (as discussed above).
Definition E.1. Let A be any subset of R. The maximum of A, denoted maxA, is the number
x ∈ A such that for all a ∈ A, x ≥ a.

The supremum of A, denoted supA, is the smallest number x ∈ R ∪ {∞} such that for
all a ∈ A, x ≥ a.
Maximum and supremum almost mean the same thing. For example max[0, 1] = sup[0, 1] = 1.
However, the maximum of a set of real numbers does not always exist, whereas the supremum
always does exist. For example, max[0, 1) does not exist, but sup[0, 1) = 1.
Definition E.2. The maximum of a function f : X → R, denoted

max
x∈X

f(x)

is defined as max {f(x) : x ∈ X} . The definition for the supremum of a function is analogous,

sup
x∈X

f(x) = sup {f(x) : x ∈ X}

Definition E.3. A point x∗ ∈ X is a maximiser of a function f : X → R if f(x∗) ≥ f(x) for
all x ∈ X,
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Definition E.4. The set of maximisers of a function f : X → R is denoted
argmax

x∈X
f(x).

E.2 * Existence
Is there a best choice, or is it always possible to make slight improvements to your choices?
The best tool to answer this question is based on topology, and is discussed in Theorem C.20.

E.3 Uniqueness
Are there several best choices that equally good as each other? Or can there only be one best
choice? One of the best tools to answer this question is based on convexity:
Theorem E.1. LetX ⊆ Rn. If f : X → R is strictly concave, then f has at most one maximiser.

Proof. Suppose for the sake of contradiction that x, y ∈ X both maximise f . This implies that
f(x) = f(y). Now consider z = 1

2
(x+ y). Then

f(z) = f(1
2
(x+ y))

> 1
2
f(x) + 1

2
f(y)

= f(x).

This contradicts x being a maximum.

E.4 Characterisations
How can we find the best choice(s)? What do you we know about the best choice(s)? Often
first-order conditions give insightful answers to this question:
Theorem E.2. Consider any Euclidean metric space (Rn, d2), and any subset X ⊆ Rn. If
f : X → R is differentiable, and x∗ lies in the interior of X, and x∗ is a maximiser of f , then
f ′(x∗) = 0.
Theorem E.3. Consider any Euclidean metric space (Rn, d2), and any subset X ⊆ Rn. If
f : X → R is concave, f is differentiable, and f ′(x∗) = 0, then x∗ is a maximiser of f .

E.5 Comparative Statics
How do optimal choices change when the menu changes? For example, if the price of engineers
increases, how does this affect a car manufacturer’s demand for engineers? This type of analysis
is called comparative statics. Most of Chapter 2 is devoted to answering this question with
the envelope theorem and convex analysis.
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E.6 *Transformations
Often, the best way to understand an optimisation problem is to transform it into an equivalent
problem that has the same solutions. For example, one might transform a representative agent’s
utility maximisation problem into the social planner’s problem to show that the equilibrium
is efficient.

Fix any objective function f : X → R.
Theorem E.4 (Monotone transformation). If g : R → R is strictly increasing, then x∗ maximises
f if and only if x∗ maximises h(x) = g(f(x)).
Intuitively speaking, this theorem says that if you change the unit of measurement of utility
(e.g. by doubling all utilities), then your favourite choice is unchanged.

Proof. Note that since g is strictly increasing, f(x) ≥ f(y) if and only if g(f(x)) ≥ g(f(y)).
Thus we have:

x∗ maximises f
⇐⇒ f(x∗) ≥ f(x) for all x ∈ X

⇐⇒ g(f(x∗)) ≥ g(f(x)) for all x ∈ X

⇐⇒ h(x∗) ≥ h(x) for all x ∈ X

⇐⇒ x∗ maximises h.

Question E.1. ✓ For each of the following theorems, (i) restate the theorem in plain English
in the context of choosing from restaurant menus, and (ii) prove the theorem. Note that the
following transformations only work with finite menus of choices (although these theorems can
be generalised with appropriate compactness assumptions).

Hint: Try to mimic the style of the proof of Theorem E.4 above.
Theorem E.5 (Constraint tightening). If x∗ maximises f , Y ⊆ X, and x∗ ∈ Y , then x∗ also
solves

max
y∈Y

f(y).

Theorem E.6 (Constraint relaxation). Suppose X is a finite set. If Y ⊆ X and y∗ solves
maxy∈Y f(y) then

f(y∗) ≤ max
x∈X

f(x).

Theorem E.7 (Projection). Suppose X = Y × Z. If x∗ = (y∗, z∗) maximises f , then y∗

maximises g(y) = f(y, z∗).
Theorem E.8 (Change of Variable). Suppose Y (and X) are finite sets. If g : Y → X is
surjective, then

max
y∈Y

f(g(y)) = max
x∈X

f(x).
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Theorem E.9 (Decomposition). If X = Y × Z is a finite set, then

max
(y,z)∈Y×Z

f(y, z) = max
y∈Y

max
z∈Z

f(y, z) = max
z∈Z

max
y∈Y

f(y, z).

Question E.2. ✓ Theorem E.9 is not true for arbitrary (infinite) sets. Write down a counter-
example to explain what the problem is. Suggest some extra assumptions to come up with a
true statement.

Hint 1: maxy∈Y maxz∈Z f(y, z) = maxy∈Y g(y) where g(y) = maxz∈Z f(y, z). Hint 2: think
about the set [0, 1).
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Calculus

F.1 Foundations
In “high school” mathematics, the derivative of a function f : R → R at a point x ∈ R is
defined as the limit of the slope near x,

lim
∆x→0

f(x+∆x)− f(x)

∆x
.

The concept of limit here is that for every convergent sequence ∆xn ∈ R\ {0} with ∆xn → 0,
the corresponding sequence

f(x+∆xn)− f(x)

∆xn

→ 0.

This slope-based approach can not be generalised to a function f : Rn → Rm. Instead,
modern calculus is based on two ideas.
Definition F.1. Consider two functions f, g : Rn → Rm.1 We say that g is a first-order
approximation of f at x∗ if

lim
∆x→0

f(x∗ +∆x)− g(x∗ +∆x)

‖∆x‖
= 0.

To understand this definition, first imagine it without the denominator ‖∆x‖. It would require
that f(x∗) = g(x∗) and that the function h(x) = f(x) − g(x) be continuous at x∗. Now, the
division by ‖∆x‖ amplifies any differences between f and g near x∗.

The second big idea is that of a linear function, which generalises the idea of a slope of a
one-dimensional function.
Definition F.2. A function f : Rn → Rm is a linear function if

1The ideas below generalise to any Banach space (X, ‖·‖).
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• f(x+ x′) = f(x) + f(x′) for all x, x′ ∈ Rn, and

• f(tx) = tf(x) for all t ∈ R and all x ∈ Rn.

Note that the second requirement implies that f(0) = 0.
The study of linear functions is the main topic of Linear Algebra. To keep things simple,

we will mainly focus on the case that the range is one-dimensional, i.e. m = 1. In this case, a
function f : Rn → R is linear if and only if there is some vector d ∈ Rn such that f(x) = d ·x.2
Now, we define the modern calculus meaning of a derivative:
Definition F.3. The function f : Rn → Rm is differentiable at x∗ if there is some linear
function g such that x 7→ g(x) + f(x∗) − g(x∗) is a first-order approximation of f at x∗. The
function g is called the derivative of f at x∗.
Note: if g(x) = d · x or g(x) = Dx, then the derivative is often represented by the vector d or
matrix D respectively. This vector d consists of the partial derivatives, (f1(x∗), · · · , fn(x∗)).

Examples:

• Consider f(x, y) = x2y + 1. The derivative of f at (x∗, y∗) = (1, 3) is the linear
function g(x, y) = (6, 1) · (x, y). The derivative of f at (x∗, y∗) is the linear function
g(x, y) = (2x∗y∗, (x∗)2) · (x, y), which is usually abbreviated as f ′(x∗, y∗) = Df(x∗, y∗) =
(2x∗y∗, (x∗)2) – typically without the stars.

• Consider

f(x, y) =

{
0 if x = 0 or y = 0,
1 otherwise.

The function f is not differentiable at (x∗, y∗) = (0, 0) – and also at any point with
x∗ = 0 or y∗ = 0. Suppose for the sake of contradiction that there were some linear
function g : R2 → R that (x, y) 7→ g(x, y) + f(0, 0) were a linear approximation to f at
(x∗, y∗) = (0, 0). Now, consider the sequence (xn, yn) =

1
n
(1, 1). Then the sequence

f(xn, yn)− [g(xn, yn) + f(0, 0)]

‖(xn, yn)‖

=
1− g(1/n (1, 1))

‖1/n (1, 1)‖
=

1− 1/ng(1, 1)

1/n
√
2

=
n− g(1, 1)√

2

does not converge, so g is not a derivative of f at (x∗, y∗) = (0, 0).

In fact, the logic from the example above generalises into the following theorem:
Theorem F.1. If f : Rn → Rm is differentiable at x∗, then f is continuous at x∗.

2More generally, a function f : Rn → Rm is linear if and only if there is some m × n matrix D such that
f(x) = Dx. Or, if f : X → R where (X, ‖·‖) is a Banach space, then there are two options: (i) the algebraic
dual approach, which involves representing derivatives as linear functions like f , or (ii) the topological dual
approach, which involves representing derivatives using elements of X by applying the Riesz representation
theorem. The first approach is the most direct way to generalise the logic below.
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F.2 Chain Rule
Theorem F.2 (Chain Rule). If f : Rp → Rq and g : Rq → Rr are differentiable functions, then
h(x) = g(f(x)) is differentiable with h′(x) = g′(f(x))f ′(x).

For example, if f(t) = (−t,
√
t), g(x, y) = xy2, and h(t) = g(f(t)), then h′ can be calculated

without the chain rule:

h(t) = g(f(t)) = g(−t,
√
t) = (−t)(

√
t)2 = −t2

=⇒ h′(t) = −2t,

or with the chain rule:

h′(t) = g′(f(t))f ′(t) =
[
g1(−t,

√
t) g2(−t,

√
t)
] [−1

1
2
√
t

]
= −g1(−t,

√
t) + g2(−t,

√
t)

1

2
√
t
= −(

√
t)2 + 2(−t)(

√
t)

1

2
√
t
= −2t.

F.3 Implicit Function Theorem
Theorem F.3 (Implicit Function Theorem). Suppose f : R2 → R is a differentiable function
and g : R → R is a continuous function that satisfies the property that f(x, g(x)) = 0 for
all x ∈ R. If f is differentiable at (x∗, y∗) and y∗ = g(x∗) and ∂

∂y
f(x∗, y∗) 6= 0, then g is

differentiable at x∗ with

g′(x∗) = −
∂
∂x
f(x∗, y∗)

∂
∂y
f(x∗, y∗)

.

Proof. We only prove that if g is differentiable, then its derivative is given by the formula.
Using the chain rule (Theorem F.2), we (totally) differentiate both sides of the formula

f(x, g(x)) = 0

with respect to x at x = x∗ to get

f1(x
∗, g(x∗)) + f2(x

∗, g(x∗))g′(x∗) = 0.

Rearranging gives the required formula.

Note: there is a multi-dimensional generalisation of this theorem. The proof is based on
Banach’s fixed point theorem.
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F.4 * Envelope Theorem
We introduced a simple version of the envelope theorem as Theorem 2.1. That envelope
theorem supplied a formula for differentiating the max operation, but under the assumption
that the derivative exists. But often derivatives do not exist. For example, in Figure 2.3, the
value function is not differentiable at the point that the individual is indifferent between work
and study, despite the underlying functions being differentiable.

This section presents a simplified version of the Benveniste and Scheinkman (1979) envelope
theorem, which establishes that concave value functions are differentiable. We present our own
proof, from Clausen and Strub (2016).
Definition F.4. Let X ⊆ Rn.3 Consider the functions f, g : X → R. We say that g is a
differentiable lower support function for f at x̄ ∈ X if

• g(x̄) = f(x̄),

• g(x) ≤ f(x) for all x ∈ X, and

• g is differentiable at x̄.

The definition for differentiable upper support function is analogous.
Lemma F.1 (Differentiable Sandwich Lemma). If F has differentiable upper and lower support
functions U and L at x̄, then F is differentiable at x̄ with F ′(x̄) = L′(x̄) = U ′(x̄).

Proof. The difference function d(x) = U(x) − L(x) is minimized at x̄. Therefore, d′(x̄) = 0
and we conclude L′(x̄) = U ′(x̄).

Let m = L′(x̄) = U ′(x̄). For all ∆x,

L(x̄+∆x)− F (x̄)−m ·∆x

‖∆x‖

≤ F (x̄+∆x)− F (x̄)−m ·∆x

‖∆x‖
≤ U(x̄+∆x)− F (x̄)−m ·∆x

‖∆x‖
.

Consider the limits as ∆x → 0. Since L′(x̄) = U ′(x̄) = m, the limits of the first and last
fractions are 0. By Gauss’ Squeeze Theorem, we conclude that the limit in the middle is also
0, and hence that F is differentiable at x̄ with F ′(x̄) = m.

The following theorem is a version of the Benveniste and Scheinkman (1979) envelope the-
orem which establishes that the value function is differentiable if it is concave. This raises
the question: when is the value function concave? (We gave an answer to this question in
Theorem 2.6.)

3As discussed above, it is straightforward to generalise these results to any Banach space (X, ‖·‖).
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Theorem F.4 (*Benveniste-Scheinkman envelope theorem). LetX ⊆ Rn, and consider the value
function F (x) = maxy∈Y g(x, y) with F : X → R. Let y(x) be an optimal policy function. If
F is a concave function and each g(·, y) is differentiable at x̄ then F is differentiable at x̄ with

F ′(x̄) =

[
∂g(x, y(x̄))

∂x

]
x=x̄

. (F.1)

Proof. Fix any x̄. Our plan is to find differentiable upper and lower support functions U and
L at x̄, and apply the differentiable sandwich lemma.

Lower Support Function. Consider the lazy policy l(x) = y(x̄). Let L(x) = g(x, l(x)) =
g(x, y(x̄)) be the value function when using the lazy policy. Since l(x) is a feasible choice, it
gives a lower value than the optimal choice y(x), i.e. L(x) ≤ F (x). Moreover, l(x̄) = y(x̄), so
L(x̄) = F (x̄). Since g(·, y(x̄)) is a differentiable at x̄, L is also differentiable at x̄. we conclude
that L is a differentiable lower support function at x̄.

Upper Support Function. Since F is concave, the supporting hyperplane theorem (not
presented here!) implies there is an upper support function of the form U(x) = F (x̄)+m·(x−x̄)
for at x̄. Since U is differentiable (with U ′(x) = m), we conclude that U is a differentiable
upper support function at x̄.

Derivative. By the differentiable sandwich lemma, F is differentiable at x̄, and F ′(x̄) =
L′(x̄) = U ′(x̄). Since L′(x̄) = gx(x̄, y(x̄)), equation (F.1) follows.

F.5 **Frechet Subderivatives
We believe the approach of using differentiable support functions is the easiest way to think
about differentiability in economics. However, it is not the standard approach in the mathe-
matics literature, so we provide this section to link it to more widely known ideas. Specifically,
we establish an equivalence between differentiable lower support functions and Fréchet sub-
derivatives.

Definition F.5. Let C ⊆ Rn.4 A function f : C → R is Fréchet subdifferentiable at c̄ if
there is some m ∈ Rn such that

lim inf
∆c→0

f(c̄+∆c)− f(c̄)−m ·∆c

‖∆c‖
≥ 0. (F.2)

Such an m is called a Fréchet subderivative of f at c̄. Definitions for Fréchet superdiffer-
entiable and superderivatives are analogous.

Theorem F.5. We say m is a Fréchet subderivative of f : C → R at c̄ if and only if f has a
differentiable lower support function L at c̄ such that L1(c̄) = m.

4As discussed above, the logic below generalises to any Banach space (X, ‖·‖).
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Proof. Rockafellar and Wets (1998, Proposition 8.5) prove this theorem, stated in slightly
different language. We provide a simpler proof.

If L is such a differentiable lower support function, then L1(c̄) = m, i.e.

lim
∆c→0

L(c̄+∆c)− f(c̄)−m ·∆c

‖∆c‖
= 0. (F.3)

Since f(c̄+∆c) ≥ L(c̄+∆c) for all ∆c, it follows that

lim inf
∆c→0

f(c̄+∆c)− f(c̄)−m ·∆c

‖∆c‖
≥ 0 (F.4)

and hence m is a Fréchet subderivative of f at c̄.
Conversely, suppose that m is a subderivative of f at c̄. We claim that

L(c) = min {f(c), f(c̄) +m · (c− c̄)} (F.5)

is a differentiable lower support function of f at c̄. By construction, L is a lower support
function. Moreover, the function U(c) = f(c̄) + m · (c − c̄) is a differentiable upper support
function of L at c̄; by the first part of the theorem, U1(c̄) = m is a superderivative of L at c̄.
On the other side, m is a subderivative of L at c̄ because

lim inf
∆c→0

L(c̄+∆c)− f(c̄)−m ·∆c

‖∆c‖

= min
{
0, lim inf

∆c→0

f(c̄+∆c)− f(c̄)−m ·∆c

‖∆c‖

}
(F.6)

≥ 0.

Therefore, L is differentiable at c̄ with L1(c̄) = m.

Lemma F.1 then becomes a classic result.
Lemma F.2. If m is a Fréchet subderivative of f : C → R at c̄ and M is a superderivative of
f at c̄, then f is differentiable at c̄ with f ′(c̄) = m = M .
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Sample Solutions

2.1. Suppose f has constant returns to scale. Let t > 0 be any scaling factor. Let g(x) = f(tx).
Since f has constant returns to scale, we know g(x) = f(tx) = tf(x). Differentiating these
three expressions with respect to xi gives

∂g(x)

∂xi

= t

[
∂f(x∗)

∂xi

]
x∗=tx

= t

[
∂f(x∗)

∂xi

]
x∗=x

.

Dividing the last two expressions by t gives the conclusion that the marginal productivity of
xi is the same at x and tx.

2.6. Let E be the quantity of ethylene purchased. If E < 0, then this represents the quantity
of ethylene sold. Let pE be the price of ethylene. Then the firm’s profit maximisation problem
becomes:

π(py; px, pE) = max
x,E

pyg(f(x) + E)− pxx− pEE.

The first-order conditions with respect to x and E are

g′(f(x) + E)f ′(x) =
px
py

g′(f(x) + E) =
pE
py

.

2.7. The company buys wool and dye at prices (pw, pi). It allocates (wd, ws) units of wool to
dresses and suits respectively. Similarly, it allocates (id, is) units of dye to dresses and suits
respectively. This results in f(wd, id) and g(ws, is) dresses and suits being produced, which are
sold at prices pd and ps respectively. The firm’s profit maximisation problem is

π(pd, ps; pw, pi) = max
wd,ws,id,is

pdf(wd, id) + psg(ws, is)− pw(wd + ws)− pi(id + is).
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2.8. Let (pC , pM) be the wholesale prices of chocolate and milk, and let (pc, pm) be the corre-
sponding retail prices. The firm buys (C,M) units of wholesale milk and chocolate, and hires
(lc, lm) units of labour at wage w to chocolate and milk sales, respectively. Based on these
inputs, the firm sells c(C,M, lc, lm) units of chocolate and m(C,M, lc, lm) units of milk. (Here,
we are accommodating the idea that ”overselling” chocolate might reduce milk sales.) The
firm’s profit function is

π(pc, pm; pC , pM , w)

= max
C,M,lc,lm≥0

pcc(C,M, lc, lm) + pmm(C,M, lc, lm)− w(lc + lm)− pCC − pMM.

The first-order conditions are:

pccC(C,M, lc, lm) + pmmC(C,M, lc, lm) = pC

pccM(C,M, lc, lm) + pmmC(C,M, lc, lm) = pM

pcclc(C,M, lc, lm) + pmmlc(C,M, lc, lm) = w

pcclm(C,M, lc, lm) + pmmlm(C,M, lc, lm) = w.

These first-order conditions are only relevant for interior solutions. When the retail price is
below the wholesale price, the optimal solution, (C,M, lc, lm) = (0, 0, 0, 0) is on the boundary.

2.9. (i) Let V (P ) = maxQ π(P,Q) = maxQ TR(P,Q)−TC(Q). Then the envelope theorem
establishes that

V ′(P ) =

[
∂

∂P
(PQ− TC(Q))

]
Q=Q(P )

= [Q]Q=Q(P )

= Q(P ).

It is not possible to use the envelope theorem to calculate the marginal revenue of a price
increase (but it is possible with the chain rule – it is Q(P ) + PQ′(P )).

(ii) The marginal profit, V ′(P ), can also be calculated with the chain rule:

V ′(P ) =

[
∂π(P,Q)

∂P
+

∂π(P,Q)

∂Q
Q′(P )

]
Q=Q(P )

.

The first term on the right is the “direct effect” – i.e. the extra profit from the products
that were previously sold. The second term on the right is the “indirect effect” – i.e. the
extra profit from the extra products that are sold after the price increase. The second
term is zero.
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2.10. Answer. Suppose all prices increase by the same proportion, i. A firm’s nominal profits
are

π((1 + i)p; (1 + i)w) = max
x∈Rn−1

(1 + i)pf(x)− (1 + i)w · x

= (1 + i) max
x∈Rn−1

pf(x)− w · x

= (1 + i)π(p;w).

So nominal profits increase in i.
But the real value of profits is unchanged: the quantity of each item i that can be purchased

with profits π((1 + i)p; (1 + i)w) is

π((1 + i)p; (1 + i)w)

(1 + i)pi
=

(1 + i)π(p;w)

(1 + i)pi
=

π(p;w)

pi
,

which does not change as i increases. Therefore, the firm has no incentive to increase i.

2.11. (i) Let k be the knowledge the firm is endowed with. It chooses how much labour l
and silicon s to buy at prices w and r, and sells f(k, l, s) solar cells at price p. The firm’s
profit function is

π(k, p, w, r) = max
l,s

pf(k, l, s)− wl − rs. (G.1)

(ii) Applying the envelope theorem, we calculate that

∂π(k, p, w, r)

∂k
=

[
∂

∂k
(pf(k, l, s)− wl − rs)

]
l=l(k,p,w,r),s=s(k,p,w,r)

(G.2)

= [pfk(k, l, s)]l=l(k,p,w,r),s=s(k,p,w,r) (G.3)
= pfk(k, l(k, p, w, r), s(k, p, w, r)). (G.4)

2.12. (i) The firm’s profit function is

π(p; r, w) = max
k,l

pkalb − rk − wl.

(ii) The firm’s cost function is

c(y; r, w) =min
k,l

rk + wl

s.t. kalb = y.

The firm’s profit function can be reformulated as

π(p; r, w) = max
y

py − c(y; r, w).
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(iii) Let λ be the Lagrange multiplier for the output constraint. The first-order condition
with respect to k is

r = λaka−1lb,

which implies
k = λ

a

r
kalb = λ

a

r
y.

Similarly,

l = λ
b

w
y.

Now, to solve for λ, we substitute these into the output constraint:

[
λ
a

r
y
]a [

λ
b

w
y

]b
= y

λa+bya+b
[a
r

]a [ b
w

]b
= y

ya+b−1
[a
r

]a [ b
w

]b
= λ−(a+b)

y−(a+b−1)/(a+b)
[a
r

]−a/(a+b)
[
b

w

]−b/(a+b)

= λ

y1/(a+b)−1
[a
r

]−a/(a+b)
[
b

w

]−b/(a+b)

= λ

Substituting this into the capital demand condition above gives

k(y; r, w) = λ
a

r
y =

a

r
y1/(a+b)−1

[a
r

]−a/(a+b)
[
b

w

]−b/(a+b)

y

= y1/(a+b)
[a
r

]1−a/(a+b)
[
b

w

]−b/(a+b)

= y1/(a+b)
[a
r

]b/(a+b)
[
b

w

]−b/(a+b)

= y1/(a+b)
[aw
br

]b/(a+b)

.

Similarly,

l(y; r, w) = y1/(a+b)

[
br

aw

]a/(a+b)

.
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2.13. Recall

π(k, p, w, r) = max
l,s

pf(k, l, s)− wl − rs. (G.5)

Now suppose that the production function is of the form f(k, l, s) = kg(l, s), i.e. that the
production function is linear in knowledge. The profit function can be rewritten using dynamic
programming as:

V (P,w, r) = max
l,s

Pg(l, s)− wl − rs (G.6)

π(k, p, w, r) = V (kp, w, r). (G.7)

Then V would be convex in P , because it is the upper envelope of a set of functions that
are convex in P (one for each choice of (l, s)).

By the envelope theorem,

∂V (P,w, r)

∂P
(G.8)

=

[
∂

∂P
{Pg(l, s)− wl − rs}

]
l=l(P,w,r),s=s(P,w,r)

. (G.9)

= g(l(P,w, r), s(P,w, r)). (G.10)

Since V is convex in P , then the left side of the envelope formula is increasing in P . So
the right side (supply of the intermediate output g) is also increasing in P . So if knowledge k
increases then P and hence output increase as well.

2.14. This question needs to be moved to the next section.

(i) The farm acquires dairy cows d ≥ 0, labour h ≥ 0, machines k ∈ {0, 1} at prices q,
w and r, and produces m = fk(d, h) units of milk, which it sells at price p. Its profit
function is

π(p; q, w, r) = max
d≥0,h≥0,k∈{0,1}

pfk(d, h)− qd− wh− rk.

(ii) Consider the cost minimisation problem based on output target m and adopting tech-
nology k:

ck(m; q, w) =min
d,h

qd+ wh

s.t. fk(d, h) = m.
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Since fk is concave, so ck(m; q, w) is convex in m by Theorem 2.6. The overall cost
function is

c(m; q, w, r) = min
k

fk(m; q, w)− rk

is the lower envelope of two convex functions. The two functions intersect at most one
output target m̄. (For higher targets, the rotary is better, by the assumption above.)

(iii) When the price of milk increases, then the supply of milk increases by Theorem 2.3. But
it is unclear if this increased milk target is met via more labour, cows, or switching to a
rotary machine.

2.16. (i) Let g ∈ {0, 1} be the generation of the artist (0 is old). Let hg be the hours of
artist g, and mg be the materials allocated to artist g. Painting output of artist g is
yg = fg(hg,mg) where f0(h,m) = 2f1(h,m) for all h,m > 0. Wages are w, material
prices are v, and paintings trade at price p. The studio’s profit function is

π(p, w, v) = max
h0,h1,m0,m1

pf0(h0,m0) + pf1(h1,m1)− w(h0 + h1)− v(m0 +m1).

(ii) A Bellman equation for the firm is:
π(p, w, v) = max

y0,y1
p(y0 + y1)− C0(y0, w, v)− C1(y1, w, v)

where the cost functions are
C0(y, w, v) = min

h0,m0

wh0 + vm0

s.t. f0(h0,m0) ≥ y,

and C1(y, w, v) = C0(2y, w, v).

(iii) The first-order conditions with respect to y0 and y1 are
p = ∂

∂y
C0(y0, w, v)

p = ∂
∂y
C1(y1, w, v).

In other words, the output quantities for the two artists are set so that price equals their
respective marginal costs, which therefore equal each other. Since the old artist is twice
as productive, we conclude that

∂
∂y
C0(y, w, v)

∣∣∣
y=y0

= 2 ∂
∂y

[C0(y, w, v)]
∣∣∣
y=2y1

.

Note that marginal cost is strictly increasing. (This is true by Theorem 2.6, since the
objective is linear in (y, h0,m0) and the constraint set is a convex set.) Since C0 is convex,
the marginal cost ∂

∂y
C0 is increasing. So the derivative on the left side is bigger than the

derivative on the right side, and hence y0 > 2y1. We conclude that the old artist is asked
to produce more than twice as much as the young artist.
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(iv) Picture skipped for now.

(v) The studio would be indifferent in spending an extra pound on either artist.

4.1. (i) x5(k5) = k5 and V5(k5) = 2 log k5.

(ii) V4(k4) = maxk5 log(k4 − k5) + 2 log k5. The first-order condition for k5 is 1
k4−k5

= 2
k5
,

which implies 2(k4 − k5) = k5. So k5 =
2
3
k4. Therefore, x4(k4) =

1
3
k4 and

V4(k4) = log k4
3

+ 2 log 2k4
3

= log k4
3

+ 2 log k4
3

+ 2 log 2

= 3 log k4
3

+ 2 log 2

(iii) Generalising the previous part: suppose Vt+1(kt+1) = At+1 log kt+1+Bt+1, whereAt+1, Bt+1 ∈
R. Then the first-order condition for kt+1 is 1

kt−kt+1
= At+1

kt+1
, which implies At+1(kt −

kt+1) = kt+1. So kt+1 =
At+1

1+At+1
kt and xt =

1
1+At+1

kt. Therefore

Vt(kt) = log kt
1 + At+1

+ At+1 log
At+1kt
1 + At+1

+Bt+1

= log kt
1 + At+1

+ At+1 log
kt

1 + At+1

+ At+1 logAt+1 +Bt+1

= (1 + At+1) log
kt

1 + At+1

+ At+1 logAt+1 +Bt+1

= (1 + At+1) log kt − (1 + At+1) log[1 + At+1] + At+1 logAt+1 +Bt+1

So Vt(kt) = At log kt +Bt where At = 1 + At+1 and

Bt = At+1 logAt+1 +Bt+1 − (1 + At+1) log[1 + At+1].

Using these formulas, we deduce:

• A5 = 2.
• A4 = 3.
• A3 = 4.
• A2 = 5.
• A1 = 6.
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Since kt+1 =
At+1

1+At+1
kt, substituting in At = 1 + At+1 gives kt+1 =

At+1

At
kt. So

kt =
At

At−1

At−1

At−2

· · · A2

A1

k1,

which simplifies to
kt =

At

A1

k1.

So k2(k1) =
5
6
k1 and x1(k1) =

1
6
k1.

Finally, notice that x1(k1) = · · · = x4(k1) =
1
6
k1. We conclude that

V1(k1) = 4 log k1 + 2 log(2k1) = 6 log k1 + 2 log 2.

(iv) In the previous part, we found that x1 = · · · = x4 =
1
6
and x5 =

1
3
.

4.2. (i) The Bellman equation for time t < T can be written as:

Vt(kt) = max
xt,kt+1

u(xt) + βVt+1(kt+1)

s.t. xt + kt+1 = kt.

(ii) It is possible to solve this with Lagrange multipliers, or by substitution. We use the
latter approach. The Bellman equation can be reformulated as

Vt(kt) = max
kt+1

u(kt − kt+1) + βVt+1(kt+1).

The first-order condition is

u′(xt) = βV ′
t+1(kt+1).

(iii) Applying the envelope theorem to the unconstrained formulation of the Bellman equation
gives

V ′
t (kt) =

[
∂

∂kt
{u(kt − kt+1) + βVt+1(kt+1)}

]
kt+1=kt+1(kt)

= [u′(kt − kt+1)]kt+1=kt+1(kt)

= u′(xt(kt)).

(iv) Since the envelope formula from part (iii) is true for all t, it is also true for t+ 1, i.e.

V ′
t+1(kt+1) = u′(xt+1(kt+1)).

Substituting this into the right side of the first-order condition in part (ii) gives u′(xt(kt)) =
βu′(xt+1(kt+1)) as required.
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(v) We need to assume that u is increasing and concave, and that β < 1. Combining the
envelope formula and the first-order condition, we obtain u′(xt) = βu′(xt+1) which implies
that u′(xt) < u′(xt+1). Since u is concave and increasing, u′ is decreasing and positive, so
xt > xt+1. This logic applies to all time periods, so we conclude that x1 > x2 > · · · > xT .

4.4. Comment. You might think that we need to assume that the utility function is increasing
to establish that the value function is weakly increasing. But it is not in fact necessary!
Suppose that u(x) = −x, for example, i.e. that the household does not like cake. The best
case scenario for this household is that they avoid eating any cake at all, so V (k) ≤ 0 for all k.
So the household would like to delay the inevitable – he has to eat the cake k eventually, but he
would be happy to delay it is as much as possible. His value of delaying the cake consumption
until until time t is −βtk, so we know that V (k) ≥ −βtk for all k. So the supremum value over
all possible consumption plans is V (k) = 0. But no feasible consumption plan reaches this
supremum value – the household has to eat the cake, but can always do better by delaying a
little longer.

Answer.
Before we answer the question, we summarise what we know. Let X = B(R+) be the set

of (value) functions, and Blackwell’s lemma establishes that the Bellman operator

F (V )(k) = sup
x,k′≥0

u(x) + βV (k′) (G.11)

s.t. x+ k′ = k, (G.12)

is a contraction on X. Moreover, (X, d∞) is complete by Theorem C.15. So Banach’s fixed
point theorem establishes that F has a unique fixed point, V ∗ ∈ X. By the principle of
optimality, V ∗ is the value function.

We now prove that V ∗ is weakly increasing. First, letA = {V ∈ X : V is weakly increasing}.
By Question C.50, (A, d∞) is a complete metric space.

Second, we show that F is a self-map on A. Specifically, if V (k) is weakly increasing in k,
we want to prove that F (V )(k) is also weakly increasing in k. Suppose k1 < k2. Then

F (V )(k1) = sup
x∈[0,k1]

u(x) + βV (k1 − x)

≤ sup
x∈[0,k1]

u(x) + βV (k2 − x)

≤ sup
x∈[0,k2]

u(x) + βV (k2 − x)

= F (V )(k2).

So we conclude that F (V ) is an increasing function.
Therefore, F is a contraction on (A, d∞) so the unique fixed point V ∗ lies inside A. We

conclude that V ∗ is weakly increasing.
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4.5. Let F be the Bellman operator (as defined above), and let V ∗ be the unique fixed point
(by Banach’s fixed point theorem – see above).

Let A = {f ∈ X : f is concave}. We will prove that (A, d∞) is a complete metric space and
that F is a self-map on A (i.e. F (A) ⊆ A). We will then apply Banach’s fixed point theorem
to conclude that V ∗ ∈ A.

To prove that (A, d∞) is a complete metric space, it suffices to prove that A is a closed
set in (X, d∞). (This was a previous homework question.) To this end, suppose that fn ∈ A
(i.e. that each fn is concave) and that fn → f ∗. We must establish that f ∗ ∈ A, i.e. that f ∗

is also concave. Pick any k1, k2 ∈ R+ and t ∈ (0, 1). Since fn is concave, we know that

fn(tk1 + (1− t)k2) ≥ tfn(k1) + (1− t)fn(k2).

Since fn → f ∗, we know that fn(k1) → f ∗(k1), etc. This implies that

f ∗(tk1 + (1− t)k2) ≥ tf ∗(k1) + (1− t)f ∗(k2).

Because the choices of k, k2 and t were arbitrary, we conclude that f ∗ is concave and hence
f ∗ ∈ A.

We now prove that F is a self-map on A. Suppose V ∈ A, i.e. that V is concave. Pick
any cake-sizes k, ℓ ≥ 0 and any t ∈ (0, 1). Let xn and yn be sequences of consumption choices
giving the limit value at k and ℓ respectively. That is, limn→∞ u(xn)+βV (k−xn) = F (V )(k),
and similarly for yn. Then

F (V )(tk + (1− t)ℓ) = sup
z∈[0,tk+(1−t)ℓ]

u(z) + βV (tk + (1− t)ℓ− z)

≥ lim
n

u(txn + (1− t)yn) + βV (tk + (1− t)ℓ− [txn + (1− t)yn])

= lim
n

u(txn + (1− t)yn) + βV (t[k − xn] + (1− t)[ℓ− yn])

≥ lim
n

tu(xn) + (1− t)u(yn) + β[tV (k − xn) + (1− t)V (ℓ− yn)]

= tF (V )(k) + (1− t)F (V )(ℓ).

The first inequality holds because choosing txn + (1 − t)yn gives an inferior value to the
supremum. The second inequality holds because u and V are concave. So we conclude that if
V ∈ A, then F (V ) ∈ A.

4.6. Let F be the Bellman operator, as in the previous questions. We established that the
value function V ∗ is weakly increasing and weakly concave.
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V ∗ is strictly increasing. Suppose k1 < k2. Then

F (V ∗)(k1) = sup
k′∈[0,k1]

u(k1 − k′) + βV ∗(k′)

< sup
k′∈[0,k1]

u(k1 − k′ + (k2 − k1)) + βV ∗(k′)

≤ sup
k′∈[0,k2]

u(k2 − k′) + βV ∗(k′)

= F (V ∗)(k2),

so F (V ∗) is strictly increasing. (The first inequality is because u is strictly increasing. The
second inequality is because the cake eater might do even better by saving some of the extra
cake rather than eating all of it.) Since V ∗ = F (V ∗), we conclude that V ∗ is strictly increasing.

V ∗ is strictly concave. In the proof above that if V is concave, then F (V ), the key step
is the inequality

lim
n

u(txn + (1− t)yn) + βV (t[k − xn] + (1− t)[ℓ− yn])

≥ lim
n

tu(xn) + (1− t)u(yn) + β[tV (k − xn) + (1− t)V (ℓ− yn)].

This inequality is strict if u is strictly concave and V is weakly concave, because the first term
is strictly bigger and the second term is weakly bigger on the right side.

Since we established that V ∗ is weakly concave, it follows that F (V ∗) is strictly concave.
Since V ∗ = F (V ∗), we conclude that V ∗ is strictly concave.

4.7. Let k be the cake left at the start of the day and x be today’s consumption. The per-day
utility is u(x), which we assume is increasing. The Bellman equation can be written as

V (k) = sup
x,k′

u(x) + βV (k′)

s.t. x+ 1
1.01

k′ = k.

We now show that V is increasing. One way is to compare various choices using the
Bellman equation. Suppose k1 < k2 and k′

1 is the optimal savings choice for k1. Then,

V (k2) = sup
k′

u(k2 − 1
1.01

k′) + βV (k′)

≥ u(k2 − 1
1.01

k′
1) + βV (k′

1)

≥ u(k1 − 1
1.01

k′
1) + βV (k′

1)

= V (k1).

We conclude that V (k1) < V (k2), which means that V is increasing.
Another way is to apply the envelope theorem to the Bellman equation. To complete this

proof, it would be necessary to establish that the value function is differentiable (e.g. with the
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Benveniste-Scheinkman theorem), although we will skip this step here. First, note that the
Bellman equation can be reformulated as

V (k) = sup
k′≥0

u(k − 1
1.01

k′) + βV (k′).

By the envelope theorem,

V ′(k) =
[

∂
∂k
[u(k − 1

1.01
k′) + βV (k′)]

]
k′=k′(k)

=
[
u′(k − 1

1.01
k′)
]
k′=k′(k)

= u′(x(k))

> 0.

4.8. Consider (X, d) = (R, d2) and f(x) = x
2
. Notice that f is a contraction of degree 1

2
, and

that f is a self-map on R++. Yet the fixed point of f is 0, which lies outside of R++.

B.1. True.

B.2. False.

B.3. True.

B.4. False. 0 is an element of both Q and R, so the sets overlap.

B.5. W × T × S.

B.6. {{(Atlee, n), (Churchill, 106 − n)} : n ∈ N, 0 ≤ n ≤ 106}.

B.7. {m ∈ M : there exists some w ∈ W such that (m,w) ∈ C}, which is commonly abbre-
viated to {m : (m,w) ∈ C}.

B.8. x is not well-defined – it fails on existence. There is no biggest whole number.

B.9. x is not well-defined – it fails on uniqueness. Both −1 and 1 satisfy the definition, so the
definition is ambiguous.

B.10. x∗ is not well-defined – it fails on uniqueness. Both 0 and 100 satisfy the definition, so
the definition is ambiguous.

B.11. If polygamy is prohibited, then f(m) refers to only one woman for any man m ∈ M ,
so f is a function. If polygamy is allowed, and m has two wives, w and w′, then f(m) is not
well-defined.
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B.12. No. If m∗ ∈ M is an unmarried man, then there is no corresponding woman f(m∗). In
other words, f(m∗) is undefined.

B.13. (i) There exists some x > 0 such that
√
x ≤ 0. (Note: this statement is false.)

(ii) There exists an equilibrium that is inefficient. (Or: there exists an inefficient equilib-
rium.)

(iii) There exists a crime such that corresponding punishment does not fit the crime.
A more formal answer: let C be the set of crimes, and p : C → R be the punishment
function, i.e. p(c) is the punishment for crime c. If a punishment p(c) fits the crime c,
we write p(c) ∈ F (c). The original statement can be formulated as: for all crimes c ∈ C,
p(c) ∈ F (c). The negation of this statement can be formulated as: there exists some
crime c∗ ∈ C such that p(c∗) 6∈ F (c∗).

(iv) There exists a lunch that is free.

(v) Either (a) at no time can you fool all of the people, (b) there exists some time at which
you can’t fool anybody, or (c) you can fool all of the people all of the time. (The entire
sentence is a correct answer – it is not three separate possible answers.)
Comment: When you negate a statement, you need to think about all the ways the
sentence could be false. One way Abraham Lincoln might be wrong is if it is in fact
impossible to ever fool all of the people. He would also be wrong if it is ever impossible
to fool everyone. And so on.
You can also use de Morgan’s law (look it up on Wikipedia or YouTube – see the
preparation guide). Abraham Lincoln’s statement is of the form A and B and C, where
A is “You can fool all of the people some of the time” and so on. According to de
Morgan’s law, the negation of the whole statement is not A or not B or not C.

(vi) There is at least one item that is discounted by more than 30%.

B.14. Converses:

(i) Suppose f : R → R is a continuous function. For all x and y, if f(x) > f(y) then x > y.
(Note: this statement is false. Counter-example: f(x) = −x.)

(ii) Let u : R → R+ be a utility function. If for all x ∈ R, there exists some y ∈ R such that
u(y) > u(x), then u is unbounded. (Note: this statement is false. Counter-example:
f(x) = max {−1,− exp(−x)}.)

(iii) If there is a stable match in which everyone gets married, then the number of men equals
the number of women. (Note: this statement is true, provided stable match is defined
appropriately.)
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Contrapositives:

(i) Suppose f : R → R is a continuous function. For all x and y, if f(x) ≤ f(y) then x ≤ y.
(Note: this statement is false.)

(ii) Let u : R → R+ be a utility function. If there exists some x ∈ R such that for all y ∈ R,
u(y) ≤ u(x), then u is bounded.

(iii) If there is no stable match, then the number of men differs from the number of women.

Negations: It is helpful to notice that the negation of “if A then B” is “A and not B”:

(i) Suppose f : R → R is a continuous function. Then there exists some x, y ∈ R such that
x > y and f(x) ≤ f(y). (Note: this statement is false. Counter-example: f(x) = x.)

(ii) Let u : R → R+ be a utility function. u is unbounded, and there exists some x ∈ R
such that for all y ∈ R, u(y) ≤ u(x). (Note: this statement is false. Counter-example:
f(x) = −|x|.) The hard bit is negating the conclusion. Sample working – the following
are equivalent:

• It is not the case that, for all x ∈ R, there exists some y ∈ R such that u(y) > u(x).
• There exists some x ∈ R such that there does not exist any y ∈ R such that

u(y) > u(x).
• There exists some x ∈ R such that for all y ∈ R, u(y)�u(x).

(iii) The number of men equals the number of women, yet there is no stable match in which
everyone gets married.

C.1. No. For example, consider the two functions, f(x) = 0 and

g(x) =

{
0 if x < 1,
1 if x = 1.

Now, d(f, g) = 0 but f 6= g. This violates the first property of metric spaces.

C.2. We check the three properties of metric spaces in turn:

• d′(x, y) = 0 ⇐⇒ min {1, d(x, y)} = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

• d′(y, x) = min {1, d(y, x)} = min {1, d(x, y)} = d′(x, y).

• First, we claim that min {1, a+ b} ≤ min {1, a} + min {1, b}. There are four cases to
check:
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– a ≤ 1, b ≤ 1: min {1, a+ b} ≤ a+ b.
– a > 1, b ≤ 1: 1 ≤ 1 + b.
– a ≤ 1, b > 1: 1 ≤ a+ 1.
– a > 1, b > 1: 1 ≤ 1 + 1.

Therefore,

d′(x, z) = min {1, d(x, z)} (G.13)
≤ min {1, d(x, y) + d(y, z)} by the triangle inequality, (G.14)
≤ min {1, d(x, y)}+min {1, d(y, z)} by the claim above, (G.15)
= d′(x, y) + d′(y, z). (G.16)

C.3. We check the three properties of metric spaces in turn:

• d′(x, y) = 0 ⇐⇒ d(x, y)/(1 + d(x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

• d′(y, x) = d(y, x)/(1 + d(y, x)) = d(x, y)/(1 + d(x, y)) = d′(x, y).

• d′(x, z) ≤ d′(x, y)+ d′(y, z). To show this, first notice that the function f(a) = a/(1+ a)
is increasing and satisfies the property that

f(a+ b) = a/(1 + a+ b) + b/(1 + a+ b) ≤ f(a) + f(b)

for a, b ≥ 0. Therefore,

d′(x, z) = f(d(x, z)) (G.17)
≤ f(d(x, y) + d(y, z)) (triangle inequality, f is increasing), (G.18)
≤ f(d(x, y)) + f(d(y, z)) by the property above, (G.19)
= d′(x, y) + d′(y, z). (G.20)

C.4. Let (X, d) be a metric space. Let f : R+ → R+ be a function with the properties that
(i) f(a) = 0 iff a = 0, (ii) f(a + b) ≤ f(a) + f(b), and (iii) f is weakly increasing. Let
D(x, y) = f(d(x, y)). Then (X,D) is a metric space.

Proof. We check the three properties of metric spaces:

• D(x, y) = 0 ⇐⇒ f(d(x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

• D(y, x) = f(d(y, x)) = f(d(x, y)) = D(x, y).
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• triangle inequality:

D(x, z) = f(d(x, z))

≤ f(d(x, y) + d(y, z)) by the triangle inequality and (iii)
≤ f(d(x, y)) + f(d(y, z)) by (ii)
= D(x, y) +D(y, z).

C.5. We will prove the contrapositive, i.e. that convergent sequences are bounded. To this
end, we will find a radius r such that the entire sequence lies within a distance r of x∗.

Suppose that xn → x∗. Then there exists some N such that d(xn, x
∗) < 1 for all

n > N . (We could have picked any radius – 1 is as good as any other.) Let r = 1 +
max {d(x0, x

∗), d(x1, x
∗), · · · , d(xN , x

∗)}. Then d(xn, x0) ≤ d(xn, x
∗)+ d(x∗, x0) < r+ d(x∗, x0)

for all n, so xn is a bounded sequence.

C.6. (i)
√
n is unbounded, so it does not converge.

(ii) 1
n
→ 0.

(iii) n
n+1

= 1 + 1
n+1

→ 1 + 0 = 1.

(iv)
√
n
n

= 1√
n
→ 0.

(v) xn is the sequence 1,−1, 1,−1, . . . which is not a Cauchy sequence, and therefore does
not converge.

C.7. (i) Let f ∗(x) = 1. Then fn = f ∗ and d∞(fn, f
∗) = 0 for all n. Therefore, fn → f ∗.

(ii) Let f ∗(x) = x. Then fn = f ∗ and d∞(fn, f
∗) = 0 for all n. So fn → f ∗.

(iii) fn is an unbounded sequence, so it does not converge. To see this, notice that

d∞(f0, fn) = sup
x∈[0,1]

d2(f0(x), fn(x)) = sup
x∈[0,1]

n = n.

So for all r > 0, there exist some n, specifically n = r + 1, such that d∞(f0, fn) > r.

(iv) fn is an unbounded sequence, so it does not converge. To see this, notice that

d∞(f0, fn) = sup
x∈[0,1]

d2(f0(x), fn(x)) = sup
x∈[0,1]

nx = n max
x∈[0,1]

x = n.

So for all r > 0, there exist some n, specifically n = r + 1, such that d∞(f0, fn) > r.



169

(v) Let f ∗(x) = 0. Then fn → f ∗. To see this, notice that

d∞(fn, f
∗) = sup

x∈[0,1]
d2(fn(x), f

∗(x)) = sup
x∈[0,1]

fn(x) = sup
x∈[0,1]

1

n
=

1

n
.

So for any r > 0, there exists some N (for example N = 1
r
) such that for all n ≥ N ,

d∞(fn, f
∗) < r.

(vi) Let f ∗(x) = 0. Then fn → f ∗. To see this, notice that

d∞(fn, f
∗) = sup

x∈[0,1]
d2(fn(x), f

∗(x)) = sup
x∈[0,1]

fn(x) = sup
x∈[0,1]

x

n
=

1

n
sup

x∈[0,1]
x =

1

n
.

So for any r > 0, there exists some N (for exmaple N = 1
r
) such that for all n ≥ N ,

d∞(fn, f
∗) < r.

(vii) Let f ∗(x) = x. Then fn → f ∗. To see this, notice that

d∞(fn, f
∗) = sup

x∈[0,1]
d2(fn(x), f

∗(x)) = sup
x∈[0,1]

x− n
n+1

x = sup
x∈[0,1]

x− n
n+1

x = sup
x∈[0,1]

1
n+1

x = 1
n+1

sup
x∈[0,1]

x =
1

n+ 1
.

Suppose r > 0. We would like to find some N > 0 such that d∞(fN , f
∗) < r. Since

d∞(fN , f
∗) < 1

N+1
, this amounts to finding some N such that 1

N+1
< r. This is true iff

and only if N + 1 > 1
r
, and hence N > 1

r
− 1.

So for any r > 0, there exists some N (namely N = 1
r
− 1) such that for all n ≥ N ,

d∞(fn, f
∗) < r.

(viii) Consider the sequence fn(
π
4
) = sin nπ

4
. By taking every second item, we get the subse-

quence yn = sin nπ
2

= 0, 1, 0,−1, 0, 1,−1, · · · . Thus yn is not a Cauchy sequence, and it
does not converge. It follows that xn does not converge. Hence fn does not converge,
since d∞(fn, fm) ≥ |fn(π4 )− fm(

π
4
)|.

(ix) The range of fn is [− 1
n
, 1
n
], so fn → f ∗ where f ∗(x) = 0.

C.8. Let pn be the “peaks” of xn, i.e. pn is a peak if xpn > xm for all m > pn.
If there are an infinite number of peaks, then yn = xpn is a decreasing subsequence of xn.
If there are only N peaks, then it is possible to construct a weakly increasing subsequence

of xn. Let y0 = xpN+1. Let y1 = xm where m is the smallest number such that m ≥ pN + 1
and xm ≥ y0. This process will never end, since yn contains no peaks of xn.

C.10. Let yn = d(xn, x
∗), which is a sequence of real numbers. The question is slightly

ambiguous; it’s not clear which metric space yn lies in. It turns out the answer does not hinge
on which metric is used; for simplicity we will use Euclidean space, i.e. (R, d2).

Now, pick any r > 0. Since yn → 0, there exists some N such that:
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• yn < r for all n > N , and hence

• d(xn, x
∗) < r for all n > N .

We conclude that xn → x∗.

C.11. By the formula,

at+1 =
4
5
(20 + at − 10) (G.21)

= 4
5
(10 + at) (G.22)

= 8 + 4
5
at (G.23)

Therefore,
aT = 8 + 4

5
8 + · · ·+

(
4
5

)T−1
8.

So we have a geometric series, aT = 8
∑T

t=1(
4
5
)t−1 = 8

∑T−1
t=0 (

4
5
)t, which converges to 8 1

1−(4/5)
=

40.

C.12. Pick any r > 0. We must find an N such that d(yn, x∗) < r for all n > N .
Since xn → x∗, we know there is an N1 such that d(xn, x

∗) < r
2
for all n > N1. Since

d(xn, yn) → 0, we know there is an N2 such that d(xn, yn) <
r
2
for all n > N2.

Let N = max {N1, N2}. Then for all n > N ,

d(yn, x
∗) ≤ d(xn, yn) + d(xn, x

∗)

< r
2
+ r

2

= r,

as required.

C.13. By the triangle inequality, d(yn, a) ≤ d(yn, xn) + d(xn, a). Since yn ∈ (xn, zn), we
have that d(xn, yn) ≤ d(xn, zn). Since d(xn, zn) → 0 (because xn and zn converge to a) and
d(xn, a) → 0, we deduce that d(yn, a) → 0. We conclude that yn → a.

C.14. ∂A =
{
x ∈ RN

+ : p · x = m
}
, assuming p ∈ RN

++.
Proof. We check both requirements for x ∈ ∂A. The first requirement is that there exist a

sequence an ∈ A with an → x. This is true if and only if p · x ≤ m. To see this: if x ∈ A, then
an = x is an appropriate sequence. Conversely, if x ∈ RN

+\A so that p · x > m, then points
within a sufficiently small radius r are outside of A, so no sequence an ∈ A can converge to x.

(Details: The choice of radius r is a little tricky. If distances were measured with the
Manhattan metric, then it is possible to show that r∗ = (m − p · x)/(maxn pn) would suffice.
An intuition is as follows: m− p · x is a negative number if the consumer can’t afford x; it is
how much money short they are. Dividing by pn measures the shortfall in one of the goods, not
pounds. Removing r of the most expensive items from x makes x affordable. But removing



171

strictly less than r of any of the items from x is insufficient. The situation is even more
complicated for the Euclidean metric. Removing 5 red cars is the same distance as removing
3 blue cars and 4 red cars, yet the latter involves removing 7 cars in total, which is more than
5. You can get around this problem by shrinking the radius to r = r∗/

√
n.)

The second requirement is that there exist a sequence bn ∈ RN
+\A with bn → x. This is

true if and only if p · x ≥ m. (The details are similar to before.)
Both requirements are satisfied if and only if p · x = m.

C.15. ∂A =
{
f : [0, 1] → R− s.t. supx∈[0,1] f(x) = 0

}
.

We check both requirements for f ∈ ∂A.
The first requirement is that there exist a sequence an ∈ A such that an → f . This is true

if and only if f(x) ≤ 0 for all x ∈ [0, 1]. Specifically, if an ∈ A then an(x) < 0 for all x ∈ [0, 1],
so limn→∞ an(x) ≤ 0 for all x ∈ [0, 1]. It follows that f(x) ≤ 0 for all x ∈ [0, 1]. Conversely, if
f(x) ≤ 0 for all x, then the sequence an(x) = f(x)− 1/n lies inside A, and converges to f .

The second requirement is that there exist a sequence bn ∈ B[0, 1]\A such that bn → f . I
will show this is true if and only if supx∈[0,1] f(x) ≥ 0. Let y∗ = supx∈[0,1] f(x), and let xn ∈ [0, 1]
be a sequence such that f(xn) → y∗. If y∗ ≥ 0, then the sequence bn(x) = f(x) − f(xn) + y∗

converges to f , with each bn 6∈ A (since −f(xn) + y∗ → 0). Conversely, suppose bn → f with
bn 6∈ A. Since supx∈[0,1] bn(x) ≥ 0 and bn → f , it follows that y∗ ≥ 0. (To see this, let xn

be any sequence such that bn(xn) ≥ 0. Pick any r > 0. Since bn → f , there is some N such
that |bN(xN) − f(xN)| < r. But bn(xn) ≥ 0, so f(xN) > −r. Since r was chosen arbitrarily,
let rn = 1

n
and deduce that there is some yn ∈ [0, 1] such that f(yn) > −rn = − 1

n
. Taking

the supremum of both sides, we deduce that y∗ = supx f(x) ≥ supn f(yn) ≥ supn − 1
n
= 0. We

conclude that y∗ ≥ 0.)
Both requirements are met if and only if f(x) ≤ 0 for all x ∈ [0, 1] and supx∈[0,1] f(x) ≥ 0.

C.16. ∂A = ∅.
If x ∈ A, then there is no sequence bn ∈ X\A such that bn → x. So if x ∈ A, then x 6∈ ∂A.
Similarly, if x 6∈ A, there is no sequence an ∈ A such that an → x. So if x 6∈ A, then

x 6∈ ∂A.
Since every x ∈ X is either in our outside of A, we have established every x 6∈ ∂A. So

∂A = ∅.

C.17. Suppose xn ∈ cl(A) and xn → x∗. We need to prove that x∗ ∈ cl(A).
Since xn ∈ cl(A), there exists some point yn ∈ A such that d(xn, yn) < 1/n (because there

is a sequence in A converging to xn). We can pick a point yn for each xn in this way. It follows
that d(yn, x∗) ≤ d(yn, xn) + d(xn, x

∗) < 1/n + d(xn, x
∗). So d(yn, x

∗) → 0 and hence yn → x∗

by Question C.12. We conclude that x∗ ∈ cl(A).

C.18. First, suppose x ∈ cl(A). Then there exists a sequence an ∈ A such that an → x. This
implies one of two possibilities. One is that x ∈ A. The other is that x ∈ X\A so that the



172 APPENDIX G. SAMPLE SOLUTIONS

trivial sequence bn = x ∈ (X\A) converges to x. The second possibility would imply that
x ∈ ∂A. We conclude that x is either in A or ∂A.

Second, suppose that x ∈ A ∪ ∂A. There are two possibilities, both of which imply that
there is a sequence an ∈ A with an → x and hence x ∈ cl(A). The first possibility is that
x ∈ A. In this case, the trivial sequence an = x ∈ A converges to x. The second possibility
is that x ∈ ∂A. The definition of boundary points implies that there exists some sequence
an ∈ A such that an → x.

C.19. Let xn ∈ A be a convergent sequence with xn → x∗. We need to prove that x∗ ∈ A.
Let

r = min
x,x′∈A

d(x, x′)

s.t. x 6= x′.

Since A is finite, r exists and r > 0.
Since xn → x∗, there exists some N such that

d(xn, x
∗) < r

2
for all n ≥ N .

By the triangle inequality,

d(xn, xm) ≤ d(xn, x
∗) + d(x∗, xm)

< r
2
+ r

2

= r

for all n,m ≥ N . But since distances between points in A are at least r, we deduce that
xn = xm = xN for all n,m ≥ N . So x∗ = xN ∈ A, as required.

C.20. Suppose xn ∈ A∪B converges to x∗. We need to prove that x∗ ∈ A∪B. Now, xn has a
subsequence yn that is either entirely in A or entirely in B. Without loss of generality, assume
yn ∈ A. Since yn → x∗, and A is closed, it follows that x∗ ∈ A, and hence x∗ ∈ A ∪ B.

C.21. Consider the metric space (R, d2) and the sets, An = [0, 1−1/n]. The union of all these
sets is [0, 1), which is not closed.

C.22. Let bn ∈ B be a sequence that converges to x. We must prove that x ∈ B.
Fix any set A ∈ A. Since bn ∈ B, it follows that bn ∈ A. Since A is a closed set, it follows

that x ∈ A.
Since x ∈ A for all A ∈ A, it follows that x ∈ B.
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C.23. We first show that Ĉ ⊆ cl(A). Since A ⊆ cl(A) and cl(A) is closed, it follows that
cl(A) ∈ C. Thus Ĉ = ∩C∈CC ⊆ cl(A).

We now show that cl(A) ⊆ Ĉ. Pick any x ∈ cl(A). It suffices to show that x ∈ Ĉ. Since
x ∈ cl(A), there is a sequence an ∈ A such that an → x. Since A ⊆ C for all C ∈ C, it follows
that A ⊆ Ĉ, and hence an ∈ Ĉ. Moreover, Ĉ is a closed set since it is the intersection of closed
sets. Since an ∈ Ĉ and Ĉ is closed, we conclude that x ∈ Ĉ.

C.24. First, x ∈ cl(A) if and only if there exists a sequence an ∈ A such that an → x.
Second, x ∈ cl(X\A) if and only if there exists a sequence bn 6∈ A such that bn → x.
Combining, we conclude that x is in both sets cl(A) and cl(X\A) if and only if x ∈ ∂A.

C.25. Let cn = bn − an and c∗ = b∗ − a∗. The problem can be reformulated as: if cn ≥ 0, then
c∗ ≥ 0.

Let A = R+, which is a closed set inside (R, d2). Since cn ∈ A and A is a closed set, it
follows that c∗ ∈ A, and hence c∗ ≥ 0.

C.26. B2(1) = [0, 3) is an open set in ([0, 10], d2), but [0, 3) is not an open set in (R, d2).

C.27. Suppose x ∈ A ∩ B. We need to show that there exists some radius r > 0 such that
Br(x) ⊆ A ∩ B.

Since A is open, there is some s such that Bs(x) ⊆ A. Since B is open, there is some
t such that Bt(x) ⊆ B. Let r = min {s, t}. This choice implies Br(x) ⊆ Bs(x) ⊆ A and
Br(x) ⊆ Bt(x) ⊆ B. We conclude that Br(x) ⊆ A ∩B, as required.

C.28. Consider the sets (− 1
n
, 1
n
) inside the metric space (R, d2). The intersection of these open

sets is {0}, which is not open.

C.29. Pick any x ∈ U . Then there is some set A ∈ A such that x ∈ A. Since A is an open
set, there is some open ball Br(x) ⊆ A ⊆ U . Therefore, U is an open set.

C.30. First, we show that interior(A) ⊆ U. Since interior(A) is an open set and interior(A) ⊆
A, it follows that interior(A) ∈ I and hence interior(A) ⊆ U.

Second, we show that U ⊆ interior(A). Suppose x ∈ U . Then there exists some I ∈ I such
that x ∈ I. Since I is an open set, there exists some open ball Br(x) ⊆ I ⊆ A. Therefore,
x ∈ interior(A).

C.31. Consider the metric space (R, d2) and the open setA = (0, 1)∪(1, 2). Then cl(A) = [0, 2],
and int(cl(A)) = (0, 2) 6= A.

C.32. First, {x} is a closed set in (X, d) (since the only sequence in {x} is the trivial sequence
an = x, which converges to x). Second, X\ {x} is an open set, by Theorem C.10. Finally,
U\ {x} = U ∩ (X\ {x}) is the intersection of two open sets, which is therefore open.
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C.33. I will write B1
r (x), B2

r (x) and B∞
r (x) to denote open balls with distances measured

according to d1, d2, and d3, respectively. I will also write N = {1, . . . , n}.

• (i) =⇒ (ii). Suppose that A is open inside (Rn, d1). Pick any point x ∈ A. We need to
show that there exists some radius r > 0 such that B2

r (x) ⊆ A.
Since A is open inside (Rn, d1), there exists a radius s > 0 such that B1

s (x) ⊆ A. Pick
any point y ∈ B1

s (x). I will show that d2(x, y) ≤ d1(x, y), and deduce that y ∈ B2
s (x),

and conclude that B2
s (x) ⊆ A.

To see that d2(x, y) ≤ d1(x, y), notice that

d2(x, y)
2 =

n∑
i=1

(xi − yi)
2 =

n∑
i=1

(|xi − yi|)2 ≤

(
n∑

i=1

|xi − yi|

)2

= d1(x, y)
2.

Taking square-roots of both sides establishes that d2(x, y) ≤ d1(x, y).

• (ii) =⇒ (iii). Suppose that A is open inside (Rn, d2). Pick any point x ∈ A. We need
to show that there exists some radius r > 0 such that B∞

r (x) ⊆ A.
Since A is open inside (Rn, d2), there exists a radius s > 0 such that B2

s (x) ⊆ A. Pick
any point y ∈ B1

s (x). I will show that d∞(x, y) ≤ d2(x, y), and deduce that y ∈ B∞
s (x),

and conclude that B∞
s (x) ⊆ A.

To see that d∞(x, y) ≤ d2(x, y), notice that

d∞(x, y) = max
i∈N

|xi − yi| = max
i∈N

√
|xi − yi|2 ≤

√∑
i∈N

|xi − yi|2 = d2(x, y).

• (iii) =⇒ (i). Suppose that A is open inside (Rn, d∞). Pick any point x ∈ A. We need
to show that there exists some radius r > 0 such that B1

r (x) ⊆ A.
Since A is open inside (Rn, d∞), there exists a radius s > 0 such that B1

s (x) ⊆ A. Pick
any point y ∈ B∞

s (x). Let r = s
n
. I will show that d1(x, y) ≤ nd∞(x, y), and deduce that

y ∈ B1
r (x), and conclude that B1

r (x) ⊆ A.
To see that d1(x, y) ≤ nd∞(x, y), notice that

d1(x, y) =
∑
i∈N

|xi − yi| ≤
∑
i∈N

max
j∈N

|xj − yj| =
∑
i∈N

d∞(x, y) = nd∞(x, y).

C.34. By Theorem C.12, it suffices to prove that f−1(A) is closed for all closed sets A ⊆ Y if
and only if f−1(U) is open for all open sets U ⊆ Y .

First, suppose that f is continuous and that A is a closed set in (Y, dY ). Then B = Y \A
is an open set in (Y, dY ), and f−1(B) is an open set in (X, dX). It follows that X\f−1(B) is a
closed set in (X, dX). Thus, we conclude that f−1(A) = X\f−1(B) is a closed set in (X, dX).
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Conversely, suppose that for every closed set A in (Y, dY ), the preimage f−1(A) is a closed
set in (X, dX). We need to prove that this implies that f is continuous. Let U be any open set
in (Y, dY ). Then A = Y \U is a closed set in (Y, dY ). By the condition, f−1(A) is a closed set
in (X, dX). It follows that f−1(U) = X\f−1(A) is an open set in (X, dX). We conclude that
f is continuous.

C.35. Yes. Let P (x) = p · x be the price of the vector x of goods. Since P : RN
+ → R is

a function constructed from a finite number of addition and multiplication operations, P is
continuous (see Question C.42). Let B = (m,∞), and notice that A = P−1(B). Now B is an
open set inside the co-domain, (R, d2). By Theorem C.12, A = P−1(B) is an open set in the
domain, (RN

+ , d2).

C.36. Answer. Consider (X, dX) = (Y, dY ) = (R, d2), f(x) = cosx, A = R and B = [−1, 1].
Notice that int(B) = (−1, 1). So f−1(int(B)) = R\ {nπ : n ∈ Z} is a strict subset of int(A) =
R.

C.37. The interior of A is B =
{
x ∈ RN

+ : p · x < m
}
.

First we will show B ⊆ int(A). Notice that B = f−1([0,m)) where f : RN
+ → R+ is defined

by f(x) = p · x. Since f is continuous and [0,m) is open inside (R+, d2), it follows that B
is open inside (RN

+ , d2). Moreover, B ⊂ f−1([0,m]) = A. Since B is an open subset of A, it
follows that B is a subset of the interior of A.

Next, we show that int(A) ⊆ B. In other words, we need to prove that if x ∈ int(A), then
p · x < m. Suppose otherwise, that some x ∈ int(A) has p · x ≥ m. Then there would be some
sequence bn 6∈ A converging to x, so x would be a boundary point of int(A). But the interior
of any set is open, so int(A) can not contain a boundary point.

C.38. Yes. Let P (x) = p · x be the price of the vector x of goods. Since P : RN
++ → R

is a function constructed from a finite number of addition and multiplication operations, P
is continuous (see Question C.42). Let B = [0,m], and notice that A = P−1(B). Now B
is an closed set inside the co-domain, (R, d2). By a previous homework quesiton (based on
Theorem C.12), A = P−1(B) is a closed set in the domain, (RN

++, d2).

C.39. Consider any choice x∗ ∈ RN
+ , which has a corresponding utility of u∗ = u(x∗). The

indifference curve of x∗ is I = u−1({u∗}). Since u is continuous and {u∗} is a closed set, the
previous question implies that I is a closed set.

Similarly, the upper contour set consist of choices that give higher utility, C = u−1([u∗,∞)).
Since u is continuous and [u∗,∞) is a closed set, the previous question implies that C is a closed
set.

C.40. Let the corresponding metrics be dX , dY and dZ . Now, suppose that xn ∈ X converges
to x∗. Let yn = f(xn) and y∗ = f(x∗). Since f is continuous, yn → y∗. Since g is continuous,
g(yn) → g(y∗). Therefore, g(f(xn)) → g(f(x∗)) and hence h(xn) → h(x∗). But the choices of
xn and x∗ were arbitrary, so h is continuous for all x ∈ X.
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C.41. Let xn ∈ X be a sequence that converges to x∗. Then the sequence yn = f(xn) is the
trivial sequence yn = y0 for all n, which converges to f(x∗) = y0. Therefore, f is continuous
at all x∗ ∈ X.

C.42. Suppose d2(xn, yn; x
∗, y∗) → 0. Then,√

(xn − x∗)2 + (yn − y∗)2 → 0,

(xn − x∗)2 + (yn − y∗)2 → 0, and
xn → x∗ and yn → y∗.

Therefore, xn + yn → x∗ + y∗, as required.
This last step requires a proof: if xn → x∗ and yn → y∗, then we must prove that xn+yn →

x∗ + y∗. Fix any r > 0. By the two conditions, there must be Nx and Ny such that

• d2(xn, x
∗) < r/2 for all n > Nx, and

• d2(yn, y
∗) < r/2 for all n > Ny.

Let N = max {Nx, Ny}. Then, |xn − x∗| + |yn − y∗| < r/2 + r/2 for all n > N . We conclude
that |(xn + yn)− (x∗ + y∗)| < r for all n > N .

C.43. Note that f : X → R+; we will measure distances in the co-domain with d1 (although
it turns out that d1 = d2 for R1, so this is a purely cosmetic assumption). Fix any x0. Then
for all x ∈ X, the triangle inequality implies that

d(x, x0) ≤ d(x, x∗) + d(x∗, x0)

d(x∗, x0) ≤ d(x, x∗) + d(x, x0).

Rearranging gives

d(x, x0)− d(x∗, x0) ≤ d(x, x∗)

d(x∗, x0)− d(x, x0) ≤ d(x, x∗).

Putting these together, we deduce that

|f(x)− f(x∗)| = d1(f(x), f(x
∗)) ≤ d(x, x∗).

Suppose xn ∈ X converges to x∗. Then d1(f(xn), f(x
∗)) ≤ d(xn, x

∗) → 0. So f(xn) →
f(x∗).

C.44. Since f is continuous, then U being an open set in (X, d2) implies that U = f−1(U) is
an open set in (X, d1). Since f−1 is continuous, then U being an open set in (X, d1) implies
that U = (f−1)−1(U) = f(U) is an open set in (X, d2).
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C.45. Consider the function f : R+ → [0, 1) defined by f(x) = x
1+x

, where the domain and
co-domain use the Euclidean metric. Now, f is continuous, the domain is complete, and
[0, 1) = f(R+), but the co-domain is not complete.

C.46. Suppose an ∈ A is a Cauchy sequence in (A, d). Then an is also a Cauchy sequence in
(X, d). Since (X, d) is complete, there is some point a∗ ∈ X such that an → a∗. Since A is a
closed set in (X, d), it follows that a∗ ∈ A. We conclude that an → a∗ in (A, d).

C.47. Suppose zn = (xn, yn) is a Cauchy sequence in (Z, dZ). Then for all r > 0, there exists
some N such that

• dZ(xn, yn; xm, ym) < r for all n,m > N ,

• max {dX(xn, xm), dY (yn, ym)} < r for all n,m > N , and

• dX(xn, xm) < r and dY (yn, ym) < r for all n,m > N .

It follows that xn and yn are Cauchy sequences in (X, dX) and (Y, dY ) respectively. Therefore
there exist points x∗ ∈ X and y∗ ∈ Y such that xn → x∗ and yn → y∗. This implies that for
all r > 0, there exists some N such that

• dX(xn, x
∗) < r and dY (yn, y

∗) < r for all n > N ,

• max {dX(xn, x
∗), dY (yn, y

∗)} < r for all n > N , and

• dZ(xn, yn; x
∗, y∗) < r for all n > N .

We conclude that (xn, yn) → (x∗, y∗), so (Z, dZ) is a complete metric space.

C.48. Consider the sequence fn(x) =
x
n
. Now, fn → 0 inside the metric space (B[0, 1], d∞),

where 0 represents the 0 function (i.e. the function f(x) = 0 for all x). So fn is a Cauchy
sequence inside (X, d∞) – since distances are measured the same way. However, 0 6∈ X since
0 is not strictly increasing, so (X, d∞) is incomplete.

C.49. Note that X ⊆ B(N). By Theorem C.15, (B(N), d∞) is complete. The usual notation
for representing a single item in X is as a sequence xn. However, since we will be studying
sequences of sequences, we will use function notation instead, i.e. x(n). We will reserve the
notation xn to refer to sequences inside X, and xn(k) refers to the kth item inside the nth

sequence.
Now, X is a closed set inside (B(N), d∞). To see this, suppose xn is a convergent sequence

inside X with xn → x∗. We would like to show that x∗ ∈ X, i.e. that x∗(k) ≤ 1/k for all k.
Since xn → x∗, we know that for all r > 0, there exists some N such that

d∞(xn, x
∗) < r for all n > N,
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and hence
|xn(k)− x∗(k)| ≤ d∞(xn, x

∗) < r

for all n and all k. So limn→∞ xn(k) = x∗(k). Now since each xn ∈ X, we know that
|xn(k)| ≤ 1/k for all k. The last two statements imply that |x∗(k)| ≤ 1/k.

Finally, since X is a closed subset of a complete metric space, Question C.46 implies that
(X, d∞) is a complete metric space.

C.50. Since (B(R), d∞) is complete, we just need to show A is closed in B(R). Let fn ∈ A
and fn → f ∗. If x ≤ y then fn(x) ≤ fn(y). Since fn → f ∗, fn(x) → f ∗(x) and fn(y) → f ∗(y).
Therefore, f ∗(x) ≤ f ∗(y), so f ∗ is weakly increasing and hence f ∗ ∈ A.

Comment. This proof made use of the following fact: if an ≤ bn and an → a∗ and bn → b∗

then a∗ ≤ b∗. See Question C.25

C.51. Since (B(Rn), d∞) is complete, just need to show A is closed in B(Rn). Let fn ∈ A and
fn → f ∗. We want to show that f ∗ ∈ A, which means showing that f ∗ is a weakly concave
function. We make use Theorem D.6, which characterises concavity in terms of a line being
below a curve. Fix any x, y ∈ R and any a ∈ (0, 1). We need to show that

af ∗(x) + (1− a)f ∗(y) ≤ f ∗(ax+ (1− a)y).

Since fn is concave, we know that

afn(x) + (1− a)fn(y) ≤ fn(ax+ (1− a)y).

Since fn → f ∗, we know that fn(x) → f ∗(x), fn(y) → f ∗(y) and fn(ax + (1 − a)y) →
f ∗(ax+ (1− a)y). It follows that

af ∗(x) + (1− a)f ∗(y) ≤ f ∗(ax+ (1− a)y).

C.52. Let (X, d) be a discrete metric space, where d(x, y) ∈ {0, 1} for all x, y ∈ X. Suppose
xn is a Cauchy sequence. We must show that xn is convergent. Then there exists some N such
that d(xn, xm) < 1 for all n,m > N , which implies that xn = x∗ for all n > N , where x∗ ∈ X.
Therefore xn → x∗, as required.

C.53. Pick any Cauchy sequence zn ∈ Z. We need to prove that zn is convergent.
Let (xn, yn) = zn. Since dX(xn, xm) ≤ dZ(zn, zm), it follows that xn is a Cauchy sequence.

Since (X, dX) is complete, it follows that xn is convergent. Similarly, yn is convergent. Let x∗

and y∗ be the limits of xn and yn, respectively.
Let z∗ = (x∗, y∗). Now, dZ(zn, z∗) = max {dX(xn, x

∗), dY (yn, y
∗)}. Since xn is convergent,

it follows that dX(xn, x
∗) → 0. Similarly, dY (yn, y∗) → 0. Thus dZ(zn, z∗) → 0 and zn → z∗.
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C.54. First, note that (l∞(X), d∞) = (B(N,R), d∞) is a complete metric space by Theo-
rem C.15. We just need to show that A is a closed subset of this space.

Suppose that xm ∈ A (which means that xm
n → y∗m for all m), and that xm →d∞ x∗. We

need to prove that x∗
n is a convergent sequence.

Fix any r > 0. Since xm is a Cauchy sequence, there exists some N such that d∞(xm, xn) <
r
3
for all n,m ≥ N . Moreover, since each xN is a Cauchy sequence, there exists some M such

that d(xN
j , x

N
k ) <

r
3
for all j, k > M . By the triangle inequality,

d(x∗
j , x

∗
k) ≤ d(x∗

j , x
N
j ) + d(xN

j , x
N
k ) + d(xN

k , x
∗
k)

< r
3
+ r

3
+ r

3

= r,

for all j, k > M . Therefore, x∗ is a Cauchy sequence, so x∗ ∈ A.

C.55. We prove that X is not open by proving that its complement, CB[0, 1]\X is not closed.
Specifically, we construct a sequence of functions fn 6∈ X such that fn → f ∗ and f ∗ ∈ X.

Consider f ∗(x) = −x2, and fn(x) = min
{
f ∗(x),− 1

n

}
. Clearly, f ∗ ∈ X. Also notice that

each fn is not strictly concave, because it has a flat section near 0. Therefore, fn 6∈ X.
Finally, notice that d∞(fn, f

∗) = d1(f
∗(0), fn(0)) =

1
n
. Since d∞(fn, f

∗) → 0 we conclude
that fn → f ∗, completing all criteria of the counterexample.

C.56. Suppose f is Lipschitz continuous of degree a, and that xn → x. We need to show that
f(xn) → f(x). Then

dY (f(xn), f(x)) ≤ adX(xn, x).

Since the right side converges to zero, it follows the left side converges to zero as well. Therefore,
f(xn) → f(x), so f is continuous.

C.57. Let f(x) = 1
x2+x+2

where f : R → R. Solutions to the equation coincide with fixed
points of f . First, notice that if x < 0, then x is not a fixed point of f . There are two cases:
either x ≤ −1, in which case x2+x ≥ 0, or x > −1, in which case x2+x > −1. In either case,
the denominator x2 + x+ 2 is positive, so f(x) > 0. Therefore, all fixed points lie in R+.

Second, notice that if x ≥ 0, then f(x) = 1
x2+x+2

≤ 1
2
. Therefore, all fixed points lie within

[0, 1
2
].
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Now, if x, y ∈ [0, 1
2
] then

d1(f(x), f(y)) =

∣∣∣∣ 1

x2 + x+ 2
− 1

y2 + y + 2

∣∣∣∣
=

∣∣∣∣ y2 + y − x2 − x

(x2 + x+ 2)(y2 + y + 2)

∣∣∣∣
=

∣∣∣∣ (y − x)(y + x+ 1)

(x2 + x+ 2)(y2 + y + 2)

∣∣∣∣
= |y − x| y + x+ 1

(x2 + x+ 2)(y2 + y + 2)

≤ |y − x|
1
2
+ 1

2
+ 1

(0 + 0 + 2)(0 + 0 + 2)

=
1

2
|y − x|.

So f is a contraction of degree 1
2
on the set [0, 1

2
]. By Banach’s fixed point theorem, f has

a unique fixed point x∗ ∈ [0, 1
2
].

Since neither 0 nor 1
2
are fixed points of f , we conclude that x∗ ∈ (0, 1

2
).

C.58. Suppose that xn ∈ X converges to x∗, and each xn is a fixed point of f . We need to
prove that x∗ is a fixed point of f . By continuity of f , we have f(xn) → f(x∗). But xn = f(xn),
so xn converges to both x∗ and f(x∗). Since a sequence can converge to at most one point, we
conclude that x∗ = f(x∗).

Another possible answer. Suppose that xn ∈ X converges to x∗, and each xn is a fixed
point of f . We need to prove that x∗ is a fixed point of f . Let g(x) = d(x, f(x)). Note that g
is continuous. Now g(xn) = 0 for all n, so g(xn) → 0. Moreover, by continuity g(xn) → g(x∗).
We conclude that g(x∗) = d(x∗, f(x∗)) = 0.

C.59. Consider the function T : B[0, 1] → B[0, 1] defined by T (f)(x) = f(x2)+x2

2
. Solutions to

the equation coincide with fixed points of T . Now,

d∞(T (f), T (g)) = sup
x∈[0,1]

∣∣∣∣f(x2) + x2

2
− g(x2) + x2

2

∣∣∣∣
= sup

x∈[0,1]

∣∣∣∣f(x2)

2
− g(x2)

2

∣∣∣∣
= 1

2
sup

x∈[0,1]
|f(x2)− g(x2)|

= 1
2
sup

x∈[0,1]
|f(x)− g(x)|

= 1
2
d∞(f, g).
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So, T is a contraction of degree 1
2
. Moreover, (B[0, 1], d∞) is a complete metric space (by

Theorem C.15). By Banach’s fixed point theorem, T has a unique fixed point f ∗.
Next we show that T is a self-map on X = {f ∈ CB[0, 1] : f is weakly increasing} . Note:

it is tempting to consider the set of strictly increasing functions, but this causes trouble later
on, because it is not a complete metric space. Since addition and multiplication are contin-
uous functions (see Question C.42) and function composition preserves continuity (see Ques-
tion C.40), we know that T (f) is continuous.1 Similarly, if f is weakly increasing and x < y
then:

T (f)(x) ≤ T (f)(y)

⇐⇒ (f(x2) + x2)/2 ≤ (f(y2) + y2)/2

⇐⇒ f(x2) + x2 ≤ f(y2) + y2

⇐⇒ f(X) +X ≤ f(Y ) + Y where X = x2, Y = y2,
which is true if f is weakly increasing.

Next, (CB[0, 1], d∞) is complete by Theorem C.15, andX is a closed set inside (CB[0, 1], d∞)
– the proof is similar to Question C.50. So (X, d∞) is a complete metric subspace. Reapplying
Banach’s fixed point theorem, we find that the unique fixed point f ∗ lies inside this subspace,
i.e. f ∗ is continuous and weakly increasing.

Finally, T maps weakly increasing functions to strictly increasing functions (since the sum of
a weakly increasing function f(x2) with a strictly increasing function x2 is strictly increasing).
So T (f ∗) = f ∗ must be strictly increasing.

C.60. Fix any f ∗, and let x∗ = T (f ∗). Pick any s > 0. To prove that T is continuous, it
suffices (by Theorem C.11) to find some r > 0 such that

d(T (f), x∗) < s for all f ∈ Br(f
∗).

Now,
d(T (f), x∗) ≤ d(T (f), f(x∗)) + d(f(x∗), x∗)) by the triangle inequality

= d(f(T (f)), f(x∗)) + d(f(x∗), f ∗(x∗)) since these are fixed points
≤ ad(T (f), x∗) + d(f(x∗), f ∗(x∗)) since f is a contraction
≤ ad(T (f), x∗) + d∞(f, f ∗)

which can be rearranged to
d(T (f), x∗) ≤ 1

1−a
d∞(f, f ∗).

We conclude that if d∞(f, f ∗) < r, then d(T (f), x∗) < s, where s = r
1−a

.
1We fill in some details about proving T (f) is continuous. Now, T (f) = f(x)2+x2

2 is a rather complicated
function, so for illustration purposes, we consider a simpler function S(f) = f(x) + x. First, note that
S(f)(x) = u(v(x)) where u(x, y) = x + y and v(x) = (f(x), x). Second, it is possible to show that since f is
continuous, v is also continuous. Third, Question C.42 implies that u is continuous. Fourth, Question C.40
implies that x 7→ u(v(x)) is continuous. We conclude that x 7→ S(f)(x) is a continous function.



182 APPENDIX G. SAMPLE SOLUTIONS

C.61. Suppose (X, d) has the fixed point property. Let f : X ′ → X ′ be a continuous function.
We need to prove that f has a fixed point.

Now h : X → X defined by g−1(f(g(x))) is a continuous function, and has a fixed point
x∗ ∈ X. Specifically, h(x∗) = x∗. By construction,

g−1(f(g(x∗))) = x∗,

f(g(x∗)) = g(x∗).

We conclude that g(x∗) is a fixed point of f .
The converse is analogous.

C.62. Let A ⊆ CB(X,X) be the set of contractions of degree a on the space (X, d). Suppose
that fn ∈ A and fn → f ∗. We need to show that f ∗ ∈ A.

Consider

d(f ∗(x), f ∗(y)) ≤ d(f ∗(x), fn(x)) + d(fn(x), fn(y)) + d(f ∗(y), fn(y)) ≤ 2d(f ∗, fn) + ad(x, y).

Since d(f ∗, fn) → 0 as n → ∞, this implies that

d(f ∗(x), f ∗(y)) ≤ ad(x, y).

So f ∗ is a contraction, and f ∗ ∈ A as required.

C.63. Pick any a0 ∈ A, and let an+1 = f(an). Since f(A) ⊆ A, we know that each an ∈ A.
By Banach’s fixed point theorem, an → x∗. So x∗ ∈ cl(A).

C.64. Suppose (X, d) is a compact metric space, and suppose that xn is a Cauchy sequence.
We need to prove that xn is convergent.

Since (X, d) is compact, xn has a convergent subsequence yn → y∗. By Theorem C.13,
xn → y∗.

C.65. In (R, d2), these questions can either be answered with the Bolzano-Weierstrass theorem
or from first principles:

• ∅ is trivially compact (since it contains no sequences).

• R is not compact, because it is not bounded.

• {0} is compact because the only sequence is xn = 0, which is convergent.

• [0, 1) is not compact because it is not closed.

• [0, 1] is compact, because it is closed and bounded.

In (R++, d2), the Bolzano-Weierstrass theorem does not apply:
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• (0, 1) is not compact. Consider the sequence xn = 1
n+2

. Notice that xn ∈ (0, 1). Inside
the metric space, (R, d2), xn → 0. Since 0 6∈ (0, 1), this rules out xn converging inside
((0, 1), d2).

• (0, 1] is not compact (despite being closed and bounded!), because xn = 1
n+2

does not
contain a convergent subsequence.

C.66. K is closed: Suppose xn ∈ K and xn → x∗. We must show that x∗ ∈ K. Since K is
compact, xn has a convergent subsequence yn → y∗ with y∗ ∈ K. Since yn is a subsequence of
a convergent sequence, x∗ = y∗ (see Theorem C.3). We conclude that x∗ ∈ K.

K is bounded: Pick any x ∈ X, and let An = Bn(x). Now, A = {An : n ∈ N} is an open
cover of K. Since K is compact, A has a finite subcover (by Theorem C.21). Let An∗ be the
biggest set in the open cover. Then K ⊆ Bn∗(x), so K is bounded.

C.67. Consider the sequence zn = (xn, yn) ∈ Z. Since (X, dX) is compact, xn has a convergent
subsequence xkn → x∗. Moreover, ykn has a convergent subsequence ylkn → y∗. Let z′n =
(x′

n, y
′
n) = (xlkn

, ylkn ) and z∗ = (x∗, y∗). Since x′
n is a subsequence of xkn , we know that

x′
n → x∗. And we also know that y′n → y∗. It remains to show that z′n → z∗.
Fix r > 0. Since x′

n → x∗, there exists Nx such that dX(x
′
n, x

∗) < r/2 for all n > Nx.
Similarly, there exists Ny such that dY (y′n, y∗) < r/2 for all n > Ny. Let N = max {Nx, Ny} .
Then dZ(z

′
n, z

∗) = dX(x
′
n, x

∗) + dY (y
′
n, y

∗) < r/2 + r/2 = r for all n > N . We conclude that
z′n → z∗.

C.68. Yes.
First, consider the metric space (RN , d2). Now, A is closed inside this space, because it

is the intersection of two closed sets, A = f−1([0,m]) ∩ RN
+ where f : RN → R is defined by

f(x) = p · x.
Second, A is bounded inside this space, since A ⊆ Br(0) where r = Nm/minn pn. (This is

true because, by the triangle inequality, d(0, a) ≤ d(0, (0, a2, . . . , aN))+d((0, a2, . . . , aN)), a) =
d(0, (0, a2, . . . , aN)) + a1 ≤ · · · ≤ aN + · · ·+ a1 ≤ Nm/minn pn for all a ∈ A.)

Third, A is compact inside this space by the Bolzano-Weierstrass theorem.
Fourth, this implies that A is compact inside the smaller metric space (RN

+ , d2). To see
this, we will prove the following claim:

If A ⊆ Y ⊆ X is compact in (X, d), then A is compact in (Y, d).
Proof of the claim: Consider the sequence an ∈ A. Since A is compact in (X, d), there is

a convergent subsequence bn → b∗ with b∗ ∈ A. Since (Y, d) has the same metric, bn → b∗ in
(Y, d) as well, and b∗ ∈ A as before. Thus, A is compact in (Y, d).

With home production, negative consumption is required, so the budget constraint does not
lie in (RN

+ , d2) any more. If the production function accepts unbounded quantities of inputs,
then the budget constraint would be unbounded, and not compact.
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C.69. Yes. Just like the previous question, the set of feasible allocations

A =

{
x ∈ RHN :

∑
h

xhi =
∑
h

ehi for all i ∈ I

}

is closed and bounded in (RHN , d2), and hence compact in that space. It follows that it is also
compact inside (RHN

+ , d2). (See the answer to the previous question.)
To see that A is closed, note that A = f−1({(0, 0, · · · , 0}) is the inverse image of a closed

(singleton) set, where f : RHN
+ → RN is the continuous function

f(x) =
∑
h

(xh − eh).

So Question C.34 applies.
To see that A is bounded, note that A ⊆ Br(0) where r = maxi

∑
h ehi.

C.70. No. Suppose N = 2. Then pn = ( 1
n
, 1 − 1

n
) ∈ P converges to (0, 1), but (0, 1) 6∈ P . So

P is not closed, and is therefore not compact.

C.71. Suppose the social welfare function W : RHN
+ → R is continuous with respect to the

Euclidean metric. Suppose that the set of feasible allocations A ⊆ RHN
+ is compact with respect

to the Euclidean metric (see a previous question). Then by the Extreme Value Theorem, there
is an optimal solution.

C.72. First we show that the sequence is nested, i.e. An+1 ⊆ An for all n. To begin, notice
that R(A1) ⊆ A1, since R : A1 → A1. This implies A2 ⊆ A1. Similarly, R(A2) ⊆ R(A1) which
implies that A3 ⊆ A2. Continuing in this way, we conclude that An+1 ⊆ An.

A1 is compact and non-empty. So A2 = R(A1) is non-empty, and compact since R is
continuous (by Theorem C.18). Similarly reasoning establishes that each of A3, A4, · · · are non-
empty and compact. Therefore, Cantor’s intersection theorem implies that the intersection of
these sets is non-empty.

C.73. Let A = ∩K∈CK. Consider any sequence xn ∈ A. We need to show that xn has a
convergent subsequence.

Let B be any element of C. Since A ⊆ B, it follows that xn ∈ B. So xn has a convergent
subsequence yn ∈ B such that yn → y∗ and y∗ ∈ B. Now, since each xn ∈ A it follows that
each yn ∈ A.

It remains to show that y∗ ∈ A. Since yn ∈ K for all n and all K ∈ C, and each K is
closed, it follows that y∗ ∈ K for all K ∈ C. We conclude that y∗ ∈ A.

C.74. Let K = f([0, 1]). By the Bolzano-Weierstrass theorem, [0, 1] is compact in (R, d1)
(note: if n = 1 then d1 = d2 on Rn). Since [0, 1] is compact and f is a continuous function,
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it follows that (K, d) is a compact metric space by Theorem C.18. Therefore, K is compact
inside (X, d).

Since K ⊆ A and A is an open set, every point x ∈ K is an interior point of A. Therefore,
for each x ∈ K, there is a radius r(x) > 0 such that Br(x)(x) ⊆ A. It follows that C ′ ={
Br(x)(x) : x ∈ K

}
is an open cover of K.

Since K is compact C ′ has a finite sub-cover C (by Theorem C.21). Specifically C is a
cover of K that consists of open balls, each of which is contained inside A, as required.

C.75. Proof based on sequences: Suppose X is finite. Let xn be any sequence in X. Since
X is finite, there is some point x∗ that occurs infinitely often. Therefore, the trivial sequence
yn = x∗ is a subsequence of xn, and yn → x∗. So every sequence has a convergent subsequence.
We conclude that (X, d) is compact. Note: this part of the proof did not use the fact that d is
the discrete metric. In fact, all finite metric spaces are compact.

Suppose X is infinite. Then there exists a sequence xn ∈ X in which each point is different.
Since d is the discrete metric, d(xn, xm) = 1 for all n and m. Thus, every subsequence of xn is
not a Cauchy sequence. So xn does not have any convergent subsequences. We conclude that
(X, d) is not compact.

Proof based on open covers: Suppose X is an infinite set. In a discrete metric space, all
sets are open. This means that C = {{x} : x ∈ X} is an open cover of X. Since X is infinite,
C does not have any finite subcover.

Conversely suppose that X is finite. Then every open cover of X is finite, and has itself as
a finite subcover.

C.76. Consider the function f : [0, 1] → X defined by

f(x) =

{
x if x ∈ [0, 1),
0 if x = 1.

Clearly, f is continuous at all x ∈ [0, 1). We now show that f is continuous at x = 1. Now
suppose that xn → 1. We claim that f(xn) = xn → 0 inside (X, d). Without loss of generality,
assume xn > 1

2
for all n. In this case, we have d(xn, 0) = d1(−1 + xn, 0) = xn − 1 → 0.

Comment. The space (X, d) is like a circle that was constructed by glueing the ends of a
piece of string together.

C.77. Since (X, d) is compact, xn has a convergent subsequence yn → x∗. Since xn is not
convergent, there must be some r > 0 such that there is no N such that d(xn, x

∗) < r for all
n > N . Specifically, for all N , there is some n > N such that d(xn, x

∗) > r. (Intuitively: no
matter how many N points we remove from the start of xn, some of the remaining points are
far away from x∗.) Thus, it is possible to select a subsequence zn of xn with the property that
zn has no subsequence converging to x∗. Now, zn need not be a convergent subsequence. But
since (X, d) is compact, zn has a convergent subsequence an, which must converge to something
other than x∗. Let x∗∗ be the limit of an. Thus, we have found two subsequences of xn, namely
yn → x∗ and an → x∗∗, with x∗ 6= x∗∗.
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C.78. By previous question, if xn were non-convergent, it would have subsequences with dis-
tinct limits. So xn must be convergent.

C.79. Since f is continuous, Y = f(X) and (X, dX) is compact, it follows that (Y, dY ) is
compact by Theorem C.18. Since compact metric spaces are complete, we conclude that
(Y, dY ) is a complete metric space.

C.80. Claim 1. Suppose f : R → R is weakly increasing. If xn ∈ [x∗, x∗ +1] converges to x∗,
then f(xn) is a convergent sequence.

We can prove the result using this claim. Without loss of generality, assume that xn, yn ∈
[x∗, x∗ + 1]. Let z1 = x1, z2 = y1, z3 = x2, z4 = y2, etc. It is straightforward it prove that
zn → x∗. Applying Claim 1 to zn, we conclude that f(zn) is convergent, and converges to some
point Z∗. Since f(xn) and f(yn) are subsequences of f(zn), they also converge to Z∗.

Proof of Claim 1: Let A = [x∗, x∗ + 1] and B = [f(x∗), f(x∗ + 1)]. Since f is weakly
increasing, f(A) ⊆ B. Since f(xn) ∈ B and B is compact, f(xn) has a convergent subsequence,
f(sn) → S∗.

Now suppose for the sake of contradiction that f(xn) is not convergent. In a previous ques-
tion, we established that this implies there must be another convergent subsequence f(tn) →
T ∗ 6= S∗. Without loss of generality assume that T ∗ > S∗. Let r = d(S∗, T ∗) = T ∗−S∗. Since
f(sn) → S∗, there must be some N such that

d(f(sn), S
∗) < r/3 for all n ≥ N.

Since f(tn) → T ∗ and tn → x∗, there must be some M such that

d(tn, x
∗) < d(tn, sN) and d(f(tn), T

∗) < r/3 for all n ≥ M.

This implies that tM < sN and

f(tM) > T ∗ − r/3 > S∗ + r/3 > f(sN).

This contradicts the condition that f is weakly increasing, so the premise that f(xn) is non-
convergent is mistaken.

C.81. First, suppose (X, d) is disconnected. Then there exists a non-trivial subset A ⊂ X
such that A is both open and closed. The set B = X\A is the complement of a closed set, so
Theorem C.10 implies B is open. Moreover, B is non-empty, since A 6= X. I conclude that A
and B are disjoint non-empty open sets, and A ∪B = X.

Conversely, suppose X contains two non-empty disjoint open subsets, A and B such that
A ∪ B = X. Since A = X\B and B is open, it follows by Theorem C.10 that A is closed.
Moreover, A is non-empty by assumption, and A 6= X since B is non-empty. Therefore, (X, d)
is disconnected.
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C.82. Since 0 and 2 are in the range of u, the intermediate value theorem implies that 1 is also
in the range of u. So there is a consumption bundle x ∈ Rn

+ in the domain such that u(x) = 1.

C.83. Since L has a maximum R∗, there exists some t∗ such that L(t∗) = R∗. Consider the
left half of the Laffer curve, [0, t∗]. Since L is continuous, L(0) = 0, and L(t∗) = R∗, and
R ∈ [0, R∗], the intermediate value theorem implies that there is some t ∈ [0, t∗] such that
L(t) = R. Similar logic applies to the right half of the Laffer curve, [t∗, 1].

C.84. Let G be the restriction of the function F to the smaller domain, i.e. G(s, t) = F (s, t)
and G : [0.4, 0.5]× [0.01, 0.5] → [0, 1]. Since G is continuous and 0.2 and 0.3 are in the range
of G, the intermediate value theorem implies that there is some (s∗, t∗) in the domain of G
such that G(s∗, t∗) = 0.25. Specifically, s∗ ∈ [0.4, 0.5] and t∗ ∈ [0.01, 0.5], as required.

C.85. The set of feasibly allocations,

X =
{
x : xh ∈ RN

+ for all h ∈ H
}
,

is a convex set. Therefore (X, d2) is connected. Let u(x) = (u1(x1), . . . , uH(xH)). Since the
utility functions are continuous, u is continuous. Thus, the utility possibility set U = u(X) is
connected.

C.86. Recall that (X, d) is connected if and only if the only sets that are both open and closed
are ∅ and X. Also recall that a set is both open and closed if and only if its boundary is empty.
Combining these two facts gives the conclusion: (X, d) is a connected metric space if and only
if the only sets with an empty boundary are ∅ and X.

C.87. Consider the metric space (X2, d′), where d′(x, x′; y, y′) = d(x, y)+d(x′, y′). Recall that
(X2, d′) is compact and d : X2 → R+ is continuous. Thus, there is a solution (x∗, y∗) to the
problem

m∗ = max
(x,y)∈X2

d(x, y)

.
Since f is surjective, there exists some a ∈ f−1(x) and b ∈ f−1(y). We know that

d(a, b) ≤ m∗ = d(x∗, y∗) = d(f(a), f(b)).

Thus f is not a contraction.

C.88. Let bn ∈ B be a convergent sequence inside (Y, d), whose limit is b∗. We need to prove
that b∗ ∈ B.

Since B ⊆ A, we deduce that bn ∈ A. Since A is closed in (X, d), we deduce that b∗ ∈ A.
Since bn is convergent inside (Y, d), it follows that b∗ ∈ Y . We conclude that b∗ ∈ A ∩ Y = B,
as required.
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E.1. Intuition for Theorem E.5. If x∗ was your favourite choice on the menu, and then the
restaurant discontinued some dishes, but x∗ remains on the menu, then x∗ is still your favourite
choice.

Proof of Theorem E.5. Proof 1. Since x∗ solves maxx∈X f(x), we know

f(x∗) ≥ f(x) for x ∈ X.

Since Y ⊆ X, this implies

f(x∗) ≥ f(y) for y ∈ Y .

So x∗ solves maxy∈Y f(y).
Proof 2. Consider following statements:

x∗ solves max
x∈X

f(x)

⇐⇒ f(x∗) ≥ f(x) for all x ∈ X

=⇒ f(x∗) ≥ f(y) for all y ∈ Y (since Y ⊆ X)
⇐⇒ x∗ solves max

y∈Y
f(y).

Proof 3. Suppose for the sake of contradiction that x∗ does not solve

max
y∈Y

f(y).

Then there must be some other ŷ ∈ Y with f(ŷ) > f(y). But since Y ⊆ X, we know that
ŷ ∈ X. This contradicts the condition that x∗ solves

max
x∈X

f(x).

Intuition for Theorem E.6. Suppose that in the evenings, the restaurant offers a smaller
menu which it calls the “bar” menu. Suppose your favourite item on the bar menu is y∗. Then
the best item on the full menu is at least as good as y∗.

Proof of Theorem E.6. Since X is finite, a solution x∗ ∈ X exists to

max
x∈X

f(x).

Since x∗ is a solution, we know that f(x∗) ≥ f(x) for all x ∈ X. Now y∗ ∈ X since y∗ ∈ Y
and Y ⊆ X. We conclude that f(x∗) ≥ f(y∗). Finally, f(x∗) = maxx∈X f(x), so

max
x∈X

f(x) ≥ f(y∗).
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Intuition for Theorem E.7. Suppose you have to choose a main meal y and a dessert z.
Suppose (y∗, z∗) is your favourite combination. Now suppose the restaurant ran out of all
desserts except z∗. Then you would still want to choose y∗ as your main.

Proof of Theorem E.7. Since (y∗, z∗) maximises f , we have that f(y∗, z∗) ≥ f(y, z) for all
(y, z) ∈ Y × Z. Since Y × {z∗} ⊆ Y × Z, it follows that f(y∗, z∗) ≥ f(y, z∗) for all y ∈ Y .
Substituting the definition of g, we deduce g(y∗) ≥ g(y) for all y ∈ Y . We conclude that y∗

maximizes g on Y .

Intuition for Theorem E.8. You are on holiday in France. The French restaurant has a
menu Y , which is different from the menu X you are used to back home in Edinburgh. Your
dictionary is a function g : Y → X that translates French dishes into English. Since g is a
function, every item on the French menu has an equivalent item on the Edinburgh menu. If
in addition, g is surjective, then every item on the home menu has an equivalent item on the
French menu. In this case, the theorem says that you are indifferent between eating in the
French restaurant or the home restaurant.

Proof of Theorem E.8. Let y∗ ∈ Y be any solution on the left side (one exists because Y is
finite). Thus, the left side equals f(g(y∗)).

Let x∗ = g(y∗). We will prove that x∗ is a solution on the right side, so that the right side
equals f(x∗) = f(g(y∗)). To see this, consider any x ∈ X. Since g : Y → X is surjective,
there exists some y ∈ Y with g(y) = x. Since y∗ is a solution on the left side, we know that
f(x∗) = f(g(y∗)) ≥ f(g(y)) = f(x). Therefore, f(x∗) ≥ f(x) for all x ∈ X, as required.

Intuition for Theorem E.9. Suppose you have to choose a main y and a dessert z. Then it
makes no difference if the waiter asks you to select both courses at the same time, or to select
the main first and the dessert later, or vice versa.

Proof of Theorem E.9. We prove the first equality only. The second equality is analogous.
Let x∗ = (y∗, z∗) be the solution to the first problem – we know a solution exists because

Y × Z is finite. We may define g(y) = maxz∈Z f(y, z) and let ŷ be a maximiser of g. Now,
g(ŷ) = f(ŷ, ẑ) ≤ f(y∗, z∗) for some ẑ. By the definition of ŷ, we know that g(ŷ) ≥ g(y∗).
Moreover, g(y∗) = maxz f(y∗, z) ≥ f(y∗, z∗). Combining, we have f(y∗, z∗) ≥ g(ŷ) ≥ g(y∗) ≥
f(y∗, z∗), so we conclude that all three items are equal. Therefore,

max
(y,z)∈Y×Z

f(y, z) = f(y∗, z∗) = g(ŷ) = max
y∈Y

g(y) = max
y∈Y

max
z∈Z

f(y, z).

E.2. Let X = [0, 1]× [0, 1) and f(y, z) = y+ (1
2
− y)z. The maximum is (y∗, z∗) = (1, 0), with

max
(y,z)∈Y×Z

f(y, z) = 1.

However, when y = 0,
max
z∈Z

f(y, z) = max
zinZ

f(0, 1) = max
z∈[0,1)

1

2
z,
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which does not exist.
One possible amendment would be to assume that all of the maxima exist. Another pos-

sible amendment is to assumes that Y and Z are compact sets and f is continuous; then
Theorem C.20 would ensure that the maxima exist. (This second possibility will only make
sense after you have completed the Topology section.)
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