Extreme Incentives

Andrew Clausen, University of Edinburgh

22 July 2019

Introduction

Classic moral hazard models predict harsh punishments, even for trivial offences such as not paying parking fees.

These are bad predictions:

Positive: Actual punishments are proportional to the crime.

Normative: The predictions feel unjust. Perhaps there is a good reason why.

Specifically:

Becker (1968) assumes traffic wardens' signals are perfect (but costly to acquire). The conclusion is unsurprising because there is no trade-off between insurance and incentives.

Mirrlees (1975) assumes traffic wardens' signals are noisy, but arbitrarily accurate signals occasionally surface. The conclusion is very surprising, because innocent people suffer harsh punishments.

Questions

Does assuming that all evidence is flimsy lead to more moderate predictions?

Is there an underlying methodical problem behind the bad predictions?

Contributions

- 1. I prove moral hazard models predict harsh punishments, even with flimsy evidence.
- 2. There is a methodical problem in all three versions of the model. I prove model predictions are a discontinuous function of the signal distribution.
- 3. Companion paper: I quantitatively evaluate other proposals using Edinburgh parking enforcement data.

Classic ingredients

- Grossman and Hart's (1983) formulation is most convenient.
- A risk-averse agent (e.g. drivers):
 - \blacktriangleright has a hidden action $a \in \{0, 1\}$, e.g. a = 1 for paying parking fees,
 - receives transfers t,
 - has ex-post utility u(t) ac, where $u(t) \to -\infty$ as $t \to 0$.
- A risk-neutral principal (e.g. Edinburgh Council):
 - lacktriangleright would like the agent to choose a = 1,
 - observes a noisy signal $\ell \sim f(\ell|a)$ with finite support,
 - > promises to pay the agent $t(\ell)$.

Classic problem

The principal's problem is:

$$\begin{split} W(f,c) = \max_{t(\cdot)} \lambda \sum_{\ell} f(\ell|1) u(t(\ell)) - \sum_{\ell} f(\ell|1) t(\ell) \\ \text{s.t. (IC)} \ \sum_{\ell} f(\ell|1) u(t(\ell)) - c \geq \sum_{\ell} f(\ell|0) u(t(\ell)). \end{split}$$

The model is isomorphic to having a voluntary participation constraint:

- There is a Pareto frontier of all regimes that satisfy (IC).
- Adjusting the welfare weight (λ) or the outside option traces out the same Pareto frontier

Classic literature: Becker (1968)

- Idea: if traffic wardens are costly, then why not hire fewer wardens, and compensate with harsher punishments?
- Becker assumed that wardens never make false accusations:
 - \blacktriangleright The signal ℓ is either
 - 0 (acquit a guilty or innocent person), or
 - \blacktriangleright ∞ (convict a guilty person),
 - $\blacktriangleright \ f(\infty|1) = 0, \text{ and }$
 - ► $f(\infty|0) > 0.$
- A punishment of $u(t(\infty)) = -\infty$ is never actually executed, so it deters crime without any social cost.
- There is a discontinuity between no wardens (i.e. $f(\infty|0) = 0$) and few wardens (i.e. $f(\infty|0) > 0$).

Classic literature: Becker (1968) continued

- But what if wardens sometimes make false accusations by mistake?
- Mirrlees (1975) considered this possibility.
- First, a detour about likelihood ratios.

Likelihood ratio reformulation, Kim (1995)

- The name ℓ of a signal realisation (good, black, etc.) does not matter:
 - Without loss of generality, assume ℓ is named after its likelihood ratio, i.e. $\ell = \frac{f(\ell|0)}{f(\ell|1)}$.
- Let $f(\ell) = f(\ell|1)$. Since $f(\ell|0) = \ell f(\ell|1)$, we only need to know $f(\ell|1)$. Some useful properties of likelihood ratio distributions $f(\ell)$:
 - mean(f) = 1. Proof: $mean(f) = \sum_{\ell} \ell f(\ell) = \sum_{\ell} f(\ell|0) = 1$.
 - The the null signal \emptyset has likelihood ratio distribution $\emptyset(\ell) = I(\ell = 1)$.
 - g can be obtained by discarding information from f if and only if f is a mean-preserving spread of g.
- The principal's problem in terms of likelihood ratio distributions is:

$$\begin{split} W(f,c) = \max_{t(\cdot)} \lambda \sum_{\ell} f(\ell) u(t(\ell)) - \sum_{\ell} f(\ell) t(\ell) \\ \text{s.t. (IC)} \ \sum_{\ell} f(\ell) (1-\ell) u(t(\ell)) \geq c. \end{split}$$

Classic solution

The first-order condition with respect to $t(\ell)$ is:

$$\frac{1}{u'(t(\ell))} = \lambda + \mu(1-\ell),$$

where μ is the Lagrange multiplier on the (IC) constraint.

- When $\mu = 0$, this is the Borch (1962) equation of optimal insurance.
- The μ term looks more like statistics than Bayesian decision-making:
 - ▶ there is a likelihood ratio, ℓ,
 - this is not a posterior calculation,
 - if there were a posterior, it would be that the principal knows for sure that the agent plays his best-response, a = 1.

Classic literature: Mirrlees (1975) Unpleasant Theorem revisited

Claim: Consider any sequence of signals f_n .

▶ If $max(support(f_n)) = n$ then welfare $W(f_n, c)$ converges to the first best. ▶ If in addition $f_n(1) \to 1$, then $u(t_n(n)) \to -\infty$.

Proof:

1. $\mu_n \rightarrow 0$: For $\ell = n$, the right side must be positive: $\frac{1}{n'(t-\ell)} = \lambda + \mu_n(1-\ell)$. **•** Rearrange: $\mu_n < \frac{\lambda}{n-1}$ for all n. 2. $W(\emptyset, 0) - W(f_n, c) < \mu_n c$ for all *n*: • $W(f_n, c) - W(f_n, 0) = \int_0^c W_c(f_n, \hat{c}) d\hat{c}.$ By the envelope theorem, $W_c(f_n, c) = -\mu_n$. W is concave in c, so $W_c(f_n, \hat{c}) \ge -\mu_n$ for all $\hat{c} \in [0, c]$. 3. Therefore, $W(f_n, c) \to W(\emptyset, 0)$, i.e. welfare converges to the first best. 4. Since $f_n(1) \to 1$, it follows that $u(t_n(n)) \to -\infty$.

Classic literature: Mirrlees (1975) Discussion

- Unlike Becker (1968), harsh punishments sometimes fall on innocent agents. So this prediction is even worse!
- My version of Mirrlees' theorem highlights the following discontinuity: even if f_n converges to an uninformative signal, welfare can converge to the first best.

Flimsy Evidence

- Becker and Mirrlees both assumed that overwhelming evidence is available.
 What if only moderate evidence is available, and the best evidence is only gathered rarely?
- Consider the signal $f(\ell) = (1 \varepsilon)g(\ell) + \varepsilon h(\ell)$, which is a mixture of
 - \blacktriangleright a signal g ("traffic wardens"), observed with probability 1-arepsilon, and
 - > a stronger signal h ("traffic wardens plus a detective"), observed with probability ε .

Flimsy Evidence: Main result

Assumptions:

- Let $t(\ell, \varepsilon)$ and $\mu(\varepsilon)$ be the optimal transfers and Lagrange multiplier for ε .
- Assume that for $\varepsilon = 0$ ("traffic wardens only"), the right side of the FOC

$$\frac{1}{u'(t(\ell,0))}=\lambda+\mu(0)(1-\ell)$$

is negative for $\bar{\ell} = max(support(h))$, i.e. assume $\bar{\ell} > 1 + \frac{\lambda}{\mu(0)}$.

- Theorem 1: Compare $\varepsilon \to 0+$ versus $\varepsilon = 0$.
 - ▶ Welfare improves discontinuously: $lim_{\varepsilon \to 0} W((1-\varepsilon)g + \varepsilon h, c) > W(g, c)$,
 - lncentives become harsh: $\lim_{\varepsilon \to 0} u(t(\overline{\ell}, \varepsilon)) = -\infty$.

Proof sketch:

- $\mu(\varepsilon)$ jumps downwards at $\varepsilon = 0+$ to satisfy the FOC at $\overline{\ell}$.
- Therefore, welfare improves discontinuously at $\varepsilon = 0+$.
- This is only possible with increasingly harsh punishments.

Flimsy Evidence: Optimal monitoring

- Suppose signal h costs P.
- $\blacktriangleright \ \ \text{Corollary:} \ \ sup_{\varepsilon\in[0,1]}W((1-\varepsilon)g+\varepsilon h,c)-P\varepsilon>W(g,c).$
- Interpretation:
 - Nardens (g) check many cars (1ε) and issue small fines, and
 - Teams of wardens and detectives (h) to check few cars (ε) and issue harsh penalties.

Flimsy Evidence: Limited liability

▶ Similar logic applies if there is a limited liability constraint, t(ℓ) ≥ b.
 ▶ Now, the FOC

$$\frac{1}{u'(t(\ell))} = \lambda + \mu(1-\ell)$$

fails if the right side falls below u'(b).

- When $\varepsilon \to 0$, the FOC fails, giving the boundary solution $t(\ell) = b$.
 - Interpretation: with limited liability, moderately reliable evidence leads to the worst possible punishment, b.

Even if the signal g leads to moderate incentives, the theory still fails on all three counts:

- Positive, normative: If there is a cheap way to expand the support of g, then it is optimal to do so and use extreme punishments.
- Methodical: The predictions are discontinuous. The signal g leads to very different predictions than the signal $(1 \varepsilon)g + \varepsilon h$, even when $\varepsilon \to 1$.

Preliminary: What is missing?

Note: this is preliminary work that I plan to test empirically before developing the theory.

There are two separate problems:

- 1. The model predicts harsh punishments if the evidence is overwhelming, regardless of the probability of getting caught.
- 2. Small checking probabilities can be compensated by large punishments.

I propose two new ingredients:

- 1. All evidence is flimsy, e.g. because people make innocent mistakes.
- 2. The principal must be deterred from extorting the agent ("hand over your money, or I will check your car very carefully").

"Random" monitoring: model amendments

Investigations:

- Each possible investigation $i \in I$ has likelihood ratio distribution f_i .
- The monitoring regime $p \in \Delta(I)$ costs M(p).
- Transfers now depend on (i, ℓ) .
- The utility function is bounded above by 0 (e.g. CRRA with $\rho > 1$).
- I will work with a participation constraint with outside option u_0 .

"Random" monitoring: principal's problem

$$\begin{split} &\min_{p,t_i(\ell)} M(p) + \sum_{i,\ell} p_i f_i(\ell) t_i(\ell) \\ &\text{s.t. (VP)} \ \sum_{i,\ell} p_i f_i(\ell) u(t_i(\ell)) - c \geq u_0, \\ &\text{(IC-a)} \ \sum_{i,\ell} p_i f_i(\ell) (1-\ell) u(t_i(\ell)) \geq c, \\ &\text{(IC-p)} \ \sum_{\ell} f_i(\ell) u(t_i(\ell)) = \sum_{\ell} f_j(\ell) u(t_j(\ell)) \text{ for all } i,j \in \text{support}(p). \end{split}$$

"Random" monitoring: analysis

Claim. The (VP) and (IC-p) constraints imply

$$u(t_i(\ell)) \geq \frac{u_0 + c}{f_i(\ell)}.$$

Without loss of generality, assume $p \in interior(\Delta)$.

Let U_i be the agent's expected utility under investigation *i*.

(IC-
$$p$$
) says all $U_i = U_j$ are equal.

▶ (VP) then implies
$$U_i \ge u_0 + c$$
 for all i .

$$\blacktriangleright \ \text{So} \ f_i(\ell) u(t_i(\ell)) + (1-f_i(\ell)) 0 \geq u_0 + c \ \text{for all} \ (i,\ell).$$

Literature

Related work:

- Bolton (1987) has a special case of my Corollary 1, where the background information is the null signal.
- Kim (1995) and Jewitt (2007) developed the likelihood ratio approach.
- Moroni and Swinkels (2014) study a different moral hazard setting in which extreme punishments arise.

Literature, continued

- Polinsky and Shavell (1979): Fines should be low, so people speed to the hospital in emergencies.
- Kaplow and Shavell (1994): You can tell the police about emergencies. Large fines are for dishonesty.
- But what if you forget to tell the police?

Literature, continued

- Dishonest policing ("subjective performance evaluation"):
 - ▶ In Bull (1987), evidence is soft and the principal cannot commit to honesty.
 - In MacLeod (2003), courts can enforce contracts based on soft messages, but not hard evidence.
 - But some evidence is hard, such as recordings.

Literature, continued

Continuous time:

- Holmstrom and Milgrom (1987) and Sannikov (2008) study moral hazard in continuous time.
- All actions and all information is small:
 - Does not accommodate big actions, such as whether to comply with design regulations.
 - Does not accommodate big information, such as investigations, whistleblowers, etc.

Conclusion

- Even with flimsy evidence, moral hazard model predictions are bad on positive, normative, and methodical grounds.
- Perhaps the principal's incentives to randomise are the key?